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Abstract

A novel manufacturing technology that offers a low-cost alternative for creating

more complex optical materials that are assembled with single-nanometer precision is

demonstrated. Using the enormous magnetic field gradients up to 1×107 T/m present

near the surface of magnetic recording media, colloidally suspended superparamag-

netic nanopartilces are self-assembled into patterned microstructures. The position

and shape of these microstructures are precisely controlled by magnetic patterns on

the template. The template that can be reprogrammed and reused is magnetically

recorded using commercial magnetic recording technology. These microstructures

consisting entirely of self-assembled magnetic nanoparticles are then transferred to

flexible polymer thin films with patterns maintained. In particular, all-nanoparticle

diffraction gratings are fabricated by employing this technology and extensively stud-

ied.

Based on the nanomanufacturing technology, a versatile measurement technique is

developed to study magnetic nanoparticle self-assembly dynamics. The self-assembly

dynamics is monitored in real-time by detecting optical diffraction from an all-

nanoparticle grating as it self-assembles. It is demonstrated the nanoparticle self-

assembly not only strongly depends on the nanoparticle concentration and size, but

also shows a dramatic change in the diffracted intensity as a result of the suspension

pH that is not observed with static light scattering. Further, the diffracted signal not

only has high sensitivity to the particle aggregation, but also detects different time

dependence that depends on the colloidal stability of particles.

The diffraction efficiency can be strongly enchanted by mixing the nanoparticle
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suspension with a small amount of phosphate buffer saline (PBS). While common

dynamic light scattering and Zeta potential measurements do not show such a dra-

matic dependence on the PBS volume as this optical diffraction measurement shows.

This demonstrates not only the nanoparticle self-assembly process is highly tunable,

but also the optical diffraction is more sensitive to subtle changes in colloidal stabil-

ity of particle suspensions than commonly used light scattering. This metrology has

a strong potential as a complementary metrology for commonly used dynamic light

scattering measurements.

In a second study, ultrafast magnetization dynamics are investigated by employ-

ing a pulse shaping scheme consisting of two ultrashort (∼ 30 ps) spin-transfer torque

(STT) pulses with variable delay, amplitudes and polarities. A coherent control of

the magnetization dynamics is demonstrated to reliably manipulate the magnetiza-

tion dynamics. Magnetic dynamics show strong asymmetrical dependence on the

inter-pulse delay for oppositely polarized pulses. Experimental measurements sug-

gest that appropriately-shaped spin transfer can be used to efficiently manipulate

the orientation of a free layer nanomagnet, thus providing an alternative for spin

torque driven spintronic devices. An additional 5 ns STT pulse with variable ampli-

tudes are combined and precisely timed with the pair of picosecond pulses to can-

cel the magnetic damping. Although partial damping cancellation is possible with

dc currents, the resulting trajectories are completely dephased, demonstrating that

precisely-timed pulses are required to observe nearly complete damping cancellation

with time-domain sampling experiments. Partial experimental work that attempts

to uncover ultrafast demagnetization process by combining ∼ 1ps STT pulses with

femtosecond optical pulses has also been performed.
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Chapter 1

General Introduction

This thesis consists of two major experimental projects I have pursued in my graduate

research. The first project (nanoparticle self-assembly: chapter 2 - 5) focuses on a

novel nanomanufacturing technology and investigation of nanoparticle self-assembly

dynamics.

The second project (spin-transfer torque: chapter 6 - 7) focuses mainly on ultrafast

magnetic dynamics induced by ultrashort spin-transfer torque (STT) pulses in spin-

valve nanostructures.

1.1 Motivation

As nanotechnology advances, nanoparticles appear one of the most prominent poten-

tial candidates for technological applications [94] [157]. Implementation of excellent

functional materials or devices using nanoparticles requires not only nanostructures

with desirable functions, but also a means to assemble those nanostructures to prac-

tical sizes while maintaining the nanostructure arrangement. The application of nan-

otechnology to areas such as photonics and electronics, chemical and biological sen-

sors, energy storage, and catalysis requires this manipulation of these nanoparticles

into functional materials and devices, and this remains a fundamental challenge.

Nanoparticle self-assembly, also known as bottom-up nanofabrication, utilizing

nanoparticles as building blocks to construct larger, complex and functional structures

such as sheets, tubes, wires, and shells needed as scaffolds and structures for catalysis,

hydrogen storage, nanoelectronic devices, and drug delivery [201] [72] [246] [136] [21]

1



www.manaraa.com

, is one of the most important, promising, and sustainable techniques for applications

[80] [214] [180]. This process is similar to the biological technique of assembling small

structural blocks at the atomic or molecular level to a large structure, such as DNA

nanostructures self-assemble into proteins [233] [239].

This bottom-up nanofabrication has some advantages over the traditional top-

down method. Nanofabrication using top-down technology not only requires pre-

cise growth techniques such as physical vapor deposition, chemical vapor deposition,

molecular beam epitaxy, but also involves patterning techniques such as photolithog-

raphy, electron beam lithography, and nanoimprint lithography. The above mentioned

processes, though standard, are laborious, time-consuming, and costly. In contrast,

the nanoparticle self-assembly approach is simple and cost effective [233] [154] [134] .

To date, although many nanoparticle assembly approaches have been demon-

strated in the literature [170], [21] [38] [173] [149] [68] [145] [218], few offer a com-

prehensive, predictable, and generally applicable scheme. In this dissertation, I de-

scribe experimental research to develop a low-cost and reliable nanomanufacturing

technology by employing magnetic nanoparticle self-assembly and a pattern transfer

technique to create complex functional materials. One device that I have nanoman-

ufactured and studied extensively is the diffraction grating. Diffraction gratings con-

sisting of a large number of equally spaced parallel slits or grooves play an important

role in many technologies, including spectroscopy [122], laser systems [86], and in-

formation communication [244], where, for example, gratings increase the capacity

of fiber-optic networks using wavelength division multiplexing/demultiplexing [151].

High-resolution commercial diffraction gratings were originally fabricated with ruling

engines, and the ruling process is slow and requires precise control of mechanical

motion and external vibration [87]. Other fabrication methods include photographic

recording of a stationary interference fringe field in photoresist to create a holographic

grating [164], electron beam lithography [137], and focused ion beam etching [58]. Re-
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cently, gratings have been fabricated using laser pulses to ablate metal nanoparticles

or thin films, with interference to create the grating pattern [50, 98, 116]. Given

the evolving need for control over optical element fabrication, lower cost and sus-

tainable manufacturing technologies with nanometer precision are needed to create

novel optical materials, and maintain the pace of technological innovation in optical

technologies.

In addition, magnetic nanoparticles cover a broad spectrum in potential applica-

tions such as magnetic seals in motors, magnetic inks for bank cheques, and biomed-

ical applications (e.g., magnetic resonance contrast media and therapeutic agents in

cancer treatment) [14] [234] [152]. In particular, magnetic nanocrystals are promis-

ing building blocks for high-performance nanodevices for information storage [32]

[159]. Well controlled magnetic particles have been fabricated and self-assembled into

three dimensional superlattices. These assemblies are chemically and mechanically

robust and have potential in application for high-density magnetic recording media

[215] [214]. State-of-the-art spintronics devices require not only nanoscale designs

and fabrication techniques, but also high-quality magnetic media that can support

fast/ultrafast magnetic transitions.

Spintronics, i.e., spin-based electronics, focuses on devices and concepts that use

the spin degree of freedom of electrons [248]. These are in strong contrast to conven-

tional electronic devices that utilize the functionality of carrier charges. Using the

spin together with the electronic charge or alone, spintronic devices have some advan-

tages over the conventional electronic devices including non-volatility, faster speeds,

higher device integration density and greater energy efficiency [235] [191].

Ferromagnetic materials possess a net spin imbalance at the Fermi level, which

can be used to create spin polarized currents. When this spin current is injected into

a ferromagnet, the spin angular momentum of the current interacts with local spins

in the ferromagnet. This exchange interaction generate a mutual torque that is called
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the spin-transfer torque [178] [210] [202] [13]. This spin-transfer torque can induce

both switching and continuous procession of the local magnetization in a ferromagnet

[209] [128]. The ability to switch ferromagnetic magnetization via the spin-transfer

torque shows strong potential for technological applications.

First, the spin-transfer torque serves a very promising candidate for data storage

technology. Disk drives, conventional data storage devices, employ the Oersted field

of a current carrying wire to switch magnetic data. The stray field of the write

head limits the data density. This difficulty could be overcome with spin-transfer

torques, where device switching is achieved with STT currents directly. This storage

architecture can be extended to 3-dimensions with each bit accessed independently

providing a large density of stored data [42] [31] [96] [4].

Second, the down-scaling of Si transistors has been going on for many decades.

Eventually the miniaturization of Si devices will come to an end. Although one tech-

nology will replace the logic elements of current computer processors is still unclear,

spin-transfer torque devices could offer an alternative. STT devices are non-volatile

and this inherent non-volatility is a dramatic advantage over Si transistors, since Si

transistor-based logic elements need to save executed information in the processor

memory [156]. This would allow the STT-based logic elements to refigure themselves

in real-time so that the computational efficiency can be maximized. In addition,

switching STT logic elements as fast as 30 ps have been achieved in spin-valve de-

vices [66]. This switching efficiency together with the non-volatility of STT-based

logic elements could increase overall computational speed, and thus STT technology

could provide an alternative for current CMOS.

These two projects that I have undertaken are not independent, but correlated.

Since the nanoparticle self-assembly can be employed to fabricate STT devices and

biosensors at lower cost than commonly used techniques such as the electron-beam

lithography and lift-off process [37] [83]. For instances, Dugay et al. has reported
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room-temperature tunneling mangetoresistance in self-assembled Fe nanoparticles

[46]. Jia et al. has fabricated a horseradish peroxidase biosensor by self-assembling

gold nanoparticles to a thiol-containing sol-gel network [104]. Nanoparticle self-

assembly has been widely used to construct kinds of biosensors including acoustic

wave, optical, electrochemical biosensors [105].

1.2 Introduction to part I: the nanoparticle self-assembly project

Nanoparticle self-assembly has been demonstrated as a sustainable manufacturing

technology for construction of complex patterns including linear chains, and close

packed arrays [201]. For optical applications, self-assembly has been used to create

dynamic diffraction gratings in liquid from colloidal nanoparticles using electrophore-

sis [229]. Similarly, self-assembly via DNA and other surface anchoring techniques

has been employed to pattern diffraction gratings on surfaces [196].

Here, I describe research that is performed to develop a low-cost nanomanu-

facturing alternative to fabricate all-nanoparticle diffraction gratings. Nanoscale

magnetically-recorded templates are created on a disk drive medium using commercial

magnetic recording technology. The magnetic medium is longitudinal or perpendic-

ular. Colloidally suspended magnetic nanoparticles are pumped onto the magnetic

medium surface. These nanoparticles suspended in the fluid self-assemble onto the

magnetic medium surface by the ultra-high field gradients present near the magnetic

medium surface. The self-assembled nanoparticles form a diffraction grating since

the recorded template is programmed to create an array of magnetic fields with equal

spacing. After a time (coating time), the remaining fluid on top of the medium sur-

face is removed leaving the self-assembled grating behind on the medium surface. A

transparent liquid polymer is spun onto the medium surface and cured. The polymer-

nanoparticle assembly is then peeled from the medium surface, while maintaining

nanoparticle patterns, yielding an all-nanoparticle diffraction grating embedded in
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the transparent polymer film.

To better understand this process the magnetic medium is placed at the bottom of

a transparent fluid cell, and optical diffraction from the grating is monitored during

assembly in real-time to study the nanoparticle self-assembly process. The depen-

dence of the nanoparticle self-assembly process on the suspension concentration, pH

and particle size, is investigated. In particular, the colloidal stability of nanopar-

ticles is varied to compare the sensitivity of this measurement technique with the

dynamic light scattering technique that is more commonly used to assess colloidal

nanoparticles.

Chapter 2 provides an introduction to magnetic nanoparticles and nanoparticle

self-assembly. Critical properties of magnetic nanoparticles and colloidal suspensions

of these magnetic nanoparticles, together with their colloidal stability, are discussed.

Techniques and methodologies that are used to drive the nanoparticle self-assembly,

in particular, a magnetic field directed self-assembly, are introduced.

Chapter 3 discusses nanomanufacturing of all-nanoparticle diffraction gratings

including the fabrication process and spectral measurements of the nanomanufactured

gratings.

Chapter 4 focuses on real-time detection of nanoparticle self-assembly dynamics

by employing optical diffraction from an all-nanoparticle grating as it self-assembles

on a magnetic medium located in a fluid cell.

Chapter 5 discusses nanoparticle self-assembly dynamics caused by destabilizing

the nanoparticle suspension. These destabilized nanoparticles are created by mixing a

stable nanoparticle suspension, i.e., a base suspension, with a known volume of Phos-

phate Buffer Saline (PBS). Measurements show that the nanoparticle self-assembly

dynamics depend strongly on the volume of added PBS. Dynamic light scattering

measurements are also performed for comparison.
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1.3 Introduction to part II: the spin-transfer torque project

Part II (chapters 6-7) reports coherent control of ultrafast nanomagnet switching

dynamics via ultrafast spin-transfer torque (STT) pulses. Understanding ultrafast

magnetic dynamics driven by STT is critical for achieving fast switching speed of these

future memory devices. Here, by using a simple pulse shaping scheme consisting of

two ultrafast spin torque pulses with variable amplitudes and delay, ultrafast magnetic

switching dynamics in spin-valve nanostructures are investigated.

Chapter 6 introduces Giant Magnetoresistance (GMR). A discussion of spin cur-

rent, STT, and magnetization dynamics is also provided. Experimental measurements

demonstrating coherent control of nanomagnet dynamics using pairs of ultrafast STT

pulses are presented. Theoretical simulations based on a Macrospin model of a nano-

magnet to interpret these experimental results are also included.

Chapter 7 presents experimental work to extend the double pulse technique. A

pair of oppositely polarized ultrafast pulses are generated to study delay dependence

of nanomagnet dynamics. Ultrafast nanomagnet dynamics are investigated while the

magnetic damping is partially canceled by an additional 5 ns STT pulse. Finally

efforts towards combining picosecond STT pulses with femtosecond optical pulses is

made.

Chapter 8 concludes this dissertation.
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Chapter 2

Magnetic Nanoparticles and Self-assembly

This chapter discusses the properties of magnetic nanoparticles. In particular, su-

perparamagnetic nanoparticles with the size on the order of 10 nm are discussed.

Colloidal stabilities, together with the inherent properties of these nanoparticles, are

crucial for their technological applications. Common methods that are used to char-

acterize nanoparticles including particle core sizes, magnetic properties, and colloidal

stability, are introduced. An introduction to techniques and methodologies that are

used to drive the nanoparticle self-assembly is also provided. In particular, magnetic

field directed self-assembly is emphasized; A novel nanomanufacturing technology

that can drive nanoparticle self-assembly using magnetically-recorded templates is

discussed.

2.1 Magnetic Nanoparticles

2.1.1 Magnetism

Magnetism has been studied for decades. Magnetism originates from electrons in

atoms or ions of solids whose orbitals are modified by their crystalline environment.

Atomic nuclei also produce magnetism. However, magnetic moments arising from

atomic nuclei are typically thousands of times smaller than those of electrons, and

therefore are negligible in magnetic materials [27]. Materials are classified into five

categories of magnetism depending on how they respond to external magnetic fields

(H), i.e., their bulk magnetic susceptibility χ: diamagnetism, paramagnetism, fer-
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romagnetism, ferrimagnetism, and antiferromagnetism [27] [34]. χ is defined as the

derivative of the magnetization (M, i.e., the magnetic moment of the magnetic ma-

terial divided by the volume) with respect to the applied magnetic field strength [5]

[34]. χ can be determined by measuring M experimentally at a finite H. Diamagnetic

materials such as Cu and Au have negative χ, while paramagnetic materials such as

Pd have positive χ. Some materials with positive χ such as Fe, Co and Ni, have a

nonvanishing magnetic moment, even in the absence of a magnetic field. Magnetism

in these materials is called ferromagnetism.

From a quantum-mechanical view, all electronic shells of a diamagnetic material

are filled, and therefore this material has zero spin and orbital angular momentum.

However when this diagmagnetic material is placed in an external field, a Lorentz force

is exerted on electrons circling the nucleus, which modifies electrons’ orbital motions

and causes a decrease of magnetic moment in the external magnetic field direction.

Therefore diamagnetism appears in all materials with a negative susceptibility.

In contrast, paramagnetism and ferromagnetism are caused by the presence of

unpaired electrons. Paramagnetic materials have non-zero total electronic angular

momentum induced by the external field and this angular momentum favors the

alignment of the magnetic moment along the field. However, paramagnets do not

retain the magnetization after the external field is removed, because thermal energy

is large enough to randomize these orientations of the angular momentum.

The net magnetic moment of ferromagnets that sustains after removing the field

must be caused by some spectacular consequence of magnetic interactions. If there

were no such magnetic interactions, the individual magnetic moments of atoms would

be thermally disordered similarly as paramagnets and thus cancel each other. This

interaction, causing the magnetic ordering, is known as the exchange interaction, or

exchange splitting and arises from the singlet-triplet energy splitting in a two-electron

system [5] [188]. The overall wave function of the two-electron system consists of both
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the spatial and spin wave functions. Since electrons having spin-1/2 are fermions,

the overall wave function must be antisymmetric. Therefore, if the spatial wave

function is symmetric, the spin wave function has to be antisymmetic. This state is

called a singlet. Similarly if the spatial wave function is antisymmetic, the spin wave

function has to be symmetric. This state is called triplet. These two states have

different energies, and the energy difference is known as the singlet-triplet energy

splitting. The energy splitting, in quantum mechanics, can be calculated using the

spin Hamiltonian [5] [34] that is expressed as

Hspin = −
∑

JS1 · S2, (2.1)

where J is the exchange constant, S1 and S2 are spin operators of the two electrons

respectively. The system will favor parallel spins if J > 0, and antiparallel if J <

0. Similarly, for a system consisting of a large number of ions, the total exchange

interaction (Hspin) equals

Hspin = −
∑

JijSi · Sj, (2.2)

which is the Heisenberg Hamiltonian [5]. Jij are known as exchange coupling con-

stants and Si and Sj are spin operators of the electrons in ion i and j respectively.

Ferrimagnetic materials such as Fe3O4 also possess spontaneous magnetization in

the absence of the field. However while the magnetic moments between nearest neigh-

bor atoms favor antiparallel alignment, their moments do not cancel, thus yielding

a net moment as a whole [5] [34]. Antiferromagnetic materials do not sustain a net

magnetic moment due to alternating alignment of equal individual local moments in

the crystalline lattice [5] [34].

2.1.2 Superparamagnetic Nanoparticles

Superparamagnetism appears in very small ferromagnetic or ferrimagnetic materi-

als. In contrast to bulk ferromagnetic materials that consist of multiple-domains

10



www.manaraa.com

and display hysteresis loops in M vs H measurements, superparamagnetic materials

primarily consist of single domains. Finite magnetic moments of superparamagnetic

materials are aligned with an external magnetic field and become zero after the field

is removed [84] [166]. Let us consider an ensemble of identical superparamagnetic

nanoparticles, each with a magnetic moment m and negligible anisotropy. Assuming
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Figure 2.1 Plot of the theoretical Langevin equation of (2.3) as a function of
µ0mH/kBT .

these nanoparticles do not interact with each other, the magnetization of the nanopar-

ticle assembly M(H) at a magnetic field H is expressed as [82]

M(H)
MS

= coth
(µ0H

kBT

)
− kBT

µ0H
= L

(µ0mH

kBT

)
, (2.3)
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where L is known as the Langevin function [33] [57], µ0 = 4π× 10−7H/m, kB, and T

are the magnetic permeability of free space, Boltzmann constant, and temperature

respectively.

Figure 2.1 shows the theoretical Langevin equation of (2.3) plotted as a function

of µ0mH/kBT at a finite temperature. M = 0 for H = 0 and increases monotonically

as H is increased.

The reason superparamagnetic materials do not sustain spontaneous magnetiza-

tion after removing the field is because their magnetic moments are extremely small.

Let us consider a uniaxial and single-domain particle with anisotropy constant (per

unit volume) K, and volume V, as shown in figure 2.2. M makes an angle θ with the

direction of uniaxial easy axis (i.e, the z axis). The anisotropy energy EB = KVsin2θ.

Thus the energy barrier (∆EB) that separates two energy minima at θ = 0 and π is

KV. If KV is sufficient small, thermal fluctuations can overcome the energy barrier

∆EB and spontaneously reverse M between two energy minima in the absence of

H. For a 5nm diameter Fe3O4 nanoparticle, K is ∼ 4.7 × 104J/m3 [76] and ∆EB is

calculated as 3 ×10−21 J, which is smaller than ∼ 4×10−21J, i.e., the thermal energy

kBT at T =300 K.

In 1949, Néel [165] proposed the the magnetization reversal process of super-

paramgenetic nanaoparticles is caused by thermal energy. This theory was further

developed by Brown in 1973 [25], who suggested the nanoparticle magnetization fluc-

tuates with a frequency f or a characteristic relaxation time τ = 1/(2πf). According

to the Néel-Brown model [232],

τ = τ0 exp
(
KV

kBT

)
, (2.4)

where τ0 = 10−10 s, is the inverse attempt frequency. τ increases as T decreases. When

τ becomes comparable to the measurement time (τm) at a particular temperature Tb,

the particle is said to be blocked and Tb is called the blocking temperature. By
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Figure 2.2 Schematic picture of the magnetic energy EB of a
single-domain particle with uniaxial anisotropy as a function of the
magnetization direction. θ is the angle between the magnetization M
and the easy axis.

equating τ = τm in equation (2.4), one obtains

Tb = KV [kBln(τm/τ0)]−1. (2.5)

Using equation (2.5) for a 5 nm diameter Fe3O4 nanoparticle and τm = 1 ms, one
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obtains Tb = 18 K.

2.1.3 Ferrofluid

A great deal of interest in suspensions of magnetic nanoparticles in carrier liquids is

stimulated by the fact that such fluids possess both normal liquid behavior and the

possibility to control their flow and properties with moderate magnetic fields [184]

[176] [192]. These suspensions, also called ferrofluids [216, 140], contain superpara-

magnetic particles with a size of about 10 nm in diameter, and the carrier liquid

is typically an oil or water base. The magnetic material most often used is mag-

netite (Fe3O4). These magnetic nanoparticles are protected appropriately against

agglomeration and thus stably suspended in the fluid (section 2.2 describes how these

nanoparticles are protected).

The control of flow and other properties of particles with external magnetic fields

is possible because each particle can be treated as a thermally agitated single domain

particle in the carrier liquid, i.e., each particle carries a magnetic moment in an

applied magnetic field. A magnetic force can be exerted on the particle by applying

a magnetic field gradient. This magnetic force is proportional to both the particle

magnetic moment and the field gradient. Relatively strong magnetic forces can be

generated for particles suspended in a ferrofluid with moderate magnetic fields and

gradients [184]. Therefore, the motion of magnetic particles in a ferrofluid can be

controlled and manipulated by applying external magnetic fields, and this field of

study is known as the magnetophoresis [139] [187] [127].

Ferrofluids are different from the usual magnetorheological fluids that consist of

micron sized particles dispersed usually in oil and are used for dampers, brakes and

clutches. A magnetorheological fluid is different from a ferrofluid which has smaller

particles. A magnetic field applied to a magnetorheological fluid causes an increase of

the viscosity. Therefore, they tend to behave like solids under large fields. However,
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the viscosity of a ferrofluid remains almost same even if subjected to strong magnetic

fields [192] [107] [23].

2.2 Colloidal Stability

Colloids are particles microscopically dispersed in another substance with particle

sizes ranging from 1 to 1000 nm [227] [146]. Ferrofluids are colloids. In most common

colloidal systems, the dispersion medium is liquid. These suspended particles do not

form sediment in a gravitational field and are subjected to Brownian motion [90]

[228] [195]. For a ferrofluid, these magnetic particles also do not agglomerate under

moderate magnetic field gradients. Nonetheless they can agglomerate in the liquid

due to van der Waals interactions [184] [88] [132] [92]. To achieve a stable suspension,

the particles are stabilized by coating surfactants on the particle surface to prevent

agglomeration. These surfactants generate repulsive forces that prevent particles from

coming in contact, and thus suppress the destabilizing effect of the van der Waals

interaction. The repulsive force can be created by electric charge (see section 2.2.2)

or long chain of organic molecules (see section 2.2.4 in detail) as shown in figure 2.3.

Colloidal particles with surface charges are electrostatically stabilized. Long chains of

polymers produce steric repulsions and hence these particles are sterically stabilized

(see section 2.2.4). These types of particle stabilization are used for the majority of

ferrofluids. They allow the suspension to remain stable over several months to years

depending on how the particles are synthesized [184] [29] [177].

2.2.1 Van der Waals Forces

In the 19th century, the Dutch physicist Johannes Diderik van der Waals attempted

to explain why real gases did not obey the ideal gas law by postulating the existence

of long-range attractive forces in the ideal gas law equation. These attractive forces

are now known as van der Waals forces. Van der Waals forces include both attractions
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magnetic particle

surfactant

Figure 2.3 A schematic view of superparamagnetic Fe3O4 nanoparticles coated
with surfactants.

and repulsions between atoms, molecules and other intermolecular forces. Later other

scientists helped to reveal the origin of van der Waals forces.

The Lennard-Jones potential is often used to approximately describe the van der

Waals interaction between two atoms or particles as a function of distance [30] [85].

The Lennard-Jones potential is defined as

w(r) = −Ar−6 +Br−12, (2.6)

where r denotes the distance between atoms, A and B are parameters in units of Jm6

and Jm12 respectively. Figure 2.4 shows a representative plot of the Lennard-Jones
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Figure 2.4 The Lennard-Jones potential and force vs particle distance
using A = 10−77 Jm6 and B = 10−134 Jm12 .

potential and force, i.e., F (r) = −dw(r)/dr, with respect to the atom separation

r. The Lennard-Jones potential predicts a minimum energy w occurs at r = re,

i.e., F (re) = 0. For atom separations smaller than re, the net force is repulsive and

the r−12 term dominates. Its physical nature originates from the Pauli principle,

i.e., the two atom system energy increases dramatically when their electronic clouds

circling the atoms start to overlap. At large atom distances (i.e., r > re), the r−6

term dominates and this term represents the attractive van der Waals interaction.

The attractive forces are not as strong as Coulomb or H-bonding interactions that

arise from dipole-dipole interactions between the fluctuating electric dipole moments

in atoms, yet they are responsible for the adhesion of atoms and the aggregation

of nanoparticles [99]. For two identical spherical nanoparticles with radii Rp and a

central seperation distance D, the van der Waals potential VA is expressed as

VA = −HRp/6D, (2.7)

where H is called Hamaker constant [99].
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2.2.2 Electrostatic Repulsion

Electrostatically stabilized colloidal particles having charged surfaces form electri-

cal double layers around their surfaces, arising from charged surfaces interact with

electrolyte ions in the solution. These ions are present in the solvent, for example,

the H3O+ and OH− ions that exist in the deionized (DI) water. The surface charge

is balanced by an equal amount of oppositely charged counterions, as shown in fig-

ure 2.5 (a). Some counterions are bound to the particle surface within a thin layer,

which is called the Stern or Helmholtz layer [99] [183] [247]. Other ions diffuse away

from the particle surface and remain in thermally agitated motion, creating a second

electrical layer. This second layer, together with the Stern layer form the electric

double layer around the particle. During particle transport, there is an artificial

boundary, so-called slipping plane that separates the mobile fluid from the fluid that

remains attached to the particle. This means the part that is bounded by the slip-

ping plane moves as a single entity. The electrical potentials at the Stern plane and

slipping plane are called the Stern and Zeta potential respectively. The cancellation

of surface charges and ions in the electric double layer makes the particle electrically

neutral.

For a surface charged particle with an electrical double layer, the potential ψ in

the surrounding fluid is described by the Debye− Hückel equation [54] [205] [174]

ψ(x) = ψ0e
−κx, (2.8)

where x is the distance from the particle surface, ψ0 is the electrical potential at the

particle surface, and 1/κ is a characteristic decay length, known as the Debye length.

The magnitude of the Debye length does not depend on the particle surface charge

or potential, but solely the liquid and temperature. For example, the Debye length

of NaCl aqueous solution at 25◦C equals 0.304/
√

[NaCl] nm [99], where [NaCl] is

the NaCl concentration in units of molarity (M). For 1mM and 1M [NaCl] solutions,
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Figure 2.5 (a) Schematic illustration of an electrical double layer that surrounds a
negatively surface charged particle. (b) Electrical potential around the particle.

the Debye lengths are 9.6 nm and 0.3 nm respectively. Figure 2.5 (b) shows ψ

schematically as a function of the distance from a negatively surface charged particle.

For two identical surface charged particles with radii Rp that are separated by a center

to center distance D, the interaction free energy per unit area is given by [99]

VR(D) = (64πkBTRpρ∞γ
2/κ2)e−κD, (2.9)

where ρ∞ is the ionic concentration in the bulk solution, and γ = tanh(zeψ0/4kBT )
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(z and e are ionic charge number and the electron charge respectively).

2.2.3 Colloidal Stability and DLVO Theory

In 1940s, Boris Derjaguin, Lev Landau, Evert Verwey and Theo Overbeek proposed

that colloidal stability is determined by repulsive electrical forces surrounding the

electrical double layer and attractive van der Waals forces, for particles that are

electrostatic stabilized. This theory became known as the DLVO theory. The total

potential VT (D) is written as

VT (D) = VA(D) + VR(D). (2.10)

Using equations (2.9) and (2.7), VT (D) is further written as

VT (D) = (64πkBTRpρ∞γ
2/κ2)e−κD −HRp/6D. (2.11)

Figure 2.6 shows VA(D), VR(D) and VT (D) as a function of particle separation.

There is a net energy barrier as a result of the double-layer repulsive interaction which

prevents particles from approaching each other and aggregating. On the contrary, if

there is a sufficiently high repulsive barrier between particles, the repulsive force

will prevent the particle flocculation from taking place and the colloidal system will

be stable. However, if the repulsion is small or the particles collide with sufficient

energy to overcome the energy barrier, Van der Waals attractive forces will pull them

together, they then adhere strongly together and will not break apart again. Particle

flocculation will occur.

In certain circumstances, e.g., colloids in solutions with high salt concentrations,

VT (D) has a smaller primary barrier and “secondary minimum” as shown in figure 2.7.

The large concentration salt decreases the primary barrier due to the electrostatic

screening [112] [99]. Electrostatic screening is the damping of electric fields that

are caused by the presence of mobile charge carriers [142] [207]. This “secondary
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Figure 2.6 Schematic diagram of the variation of free energy with the particle
separation according to DLVO theory. The net interaction energy is given by the
sum of the double layer repulsion and van der Waals attraction that particles
experience as they approach one another.

minimum” results in a weak and potentially reversible flocculation of particles. These

flocculations could be sufficiently stable and thus can not be broken up by Brownian

motions, but may dissociate under externally applied forces such as vigorous agitation.
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Figure 2.7 Schematic diagram of the variation of free energy with the particle
separation according to DLVO theory, for colloids with high salt concentrations.
The net interaction energy is given by the sum of the double layer repulsion and van
der Waals attraction that particles experience as they approach one another. There
is a secondary minimum of free energy, in addition to the primary minimum.

2.2.4 Steric Repulsion

As mentioned in the previous section, another method to achieve colloidal stability is

to add long polymer chains, such as polyethylene glycol (PEG), in the dispersion [155]

[73]. These long chains are absorbed on particle surfaces. If there are enough chains
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of polymer absorbed, these layers will overlap when particles approach each other.

This overlap makes the local polymer concentration increase, which results in higher

free energy. Therefore, these polymer chains provide repulsion between particles and

colloidal stability. This interaction is called steric repulsion.

Figure 2.8 TEM image of Fe3O4 nanoparticles.
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2.3 Nanoparticle Measurements

2.3.1 Transmission Electron Microscopy

Figure 2.9 Core size distribution of particles that are shown in figure 2.8.

Transmission electron microscopy (TEM) can be used to characterize the particle

core size [48]. In TEM, a high-energy (typically 40-400 kV) electron beam transmits

through a thin sample film to image the material at atomic level resolution. TEM

images are acquired and then analyzed to obtain a distribution of the particle core

size. A typical measurement procedure is outlined as follows. First, a diluted colloidal

solution is deposited onto a TEM sample grid and then dried. The TEM sample grid

with a continuous silicon oxide film that is electron transparent is most often used.

Second, the sample grid is loaded into the TEM chamber. TEM images of with

enough particles are obtained. Typically > 200 particles are required, depending

on the mean particle size. Figure 2.8 shows a TEM image of Fe3O4 nanoparticles.
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Finally, the TEM images are analyzed to obtain mean particle size and distribution.

For the particles displayed in figure 2.9 the mean particle size is 17.5 nm with a 2.2

nm standard deviation.

2.3.2 Vibrating Sample Magnetometer

The magnetic properties of nanoparticles are characterized with a vibrating sample

magnetometer (VSM) [56]. The VSM contains a linear motor that drives sinusoidal

vibrations of the sample in a particular frequency, e.g., 40 Hz. The sample oscillation

amplitude varies depending on the machine used. The sample is placed in a uniform

magnetic field to magnetize the sample. Our VSM vibrates the sample along the

applied magnetic field that is created by injecting currents into superconducting coils.

The oscillating magnetic moment of the sample induces a sinusoidal voltage in a

nearby pickup coil according to the Faraday’s law of induction [26] [55] . This induced

voltage, which is measured with a lock-in amplifier, is proportional to the sample

magnetic moment, but does not depend on the applied field.

Figure 2.10 shows the magnetic moment of Fe3O4 nanoparticles as a function of

applied magnetic field as determined by the VSM. These nanoparticles have a mean

size ∼13 nm in diameter, as determined by TEM. The sample is prepared by drop

casting a nanoparticle suspension with a volume of 0.2 µL Fe3O4 nanoparticles onto

a piece of Kapton tape. The curve displays zero coercivity, and the magnetic moment

of the sample increases from zero as the external field is increased, decreases back

to zero as the external field is removed. This m-H curve agrees with the prediction

from the Langevin equation (2.3), demonstrating these nanoparticles are superpara-

magnetic. The dashed line as shown in figure 2.10 is the fit of the VSM data using

the Langevin equation (2.3). The fit deviates from the VSM data because of several

reasons including the nanoparticle polydispersity (i.e., the particle size has a distri-

bution), a random anisotropy axis distribution, surface anisotropy, and interparticle
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Figure 2.10 Magnetic moment vs applied field for 13nm diameter Fe3O4
nanoparticlces, as determined by the VSM.

magnetic interactions that are not incorporated into equation (2.3) [82]. From the

fit, a saturation magnetic moment of 0.0941 emu is obtained, and a saturation mag-

netization (MS) of 4.7 ×105 A/m is calculated, which is close to the bulk value of

4.46 ×105 A/m in the literature [184].

2.3.3 Dynamic Light Scattering

Any material illuminated by light reradiates electromagnetic energy, and this radia-

tion is called scattering [97] [22]. Light scattering occurs because the electric field of

the incident light induces oscillation of electrons in the material, and these acceler-
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ated electrons radiate electromagnetic energy in all directions. Therefore, molecules

in the material provide a secondary source of light. The intensity and angular dis-

tribution of scattered light depends on the size and shape of the scattering material.

Light scattering falls into two categories, i.e., Rayleigh scattering and Mie scattering

[115] [97]. Rayleigh scattering theory applies when the particle size is much smaller

than the laser wavelength λ (typically ≤ λ/10). In the Rayleigh approximation, the

scattering intensity I ∝ d6 and I ∝ 1/λ4, where d is particle diameter. Therefore, a

100 nm diameter particle scatters 106 times more light than a 10 nm diameter parti-

cle. This d6 factor also indicates that it is difficult for a DLS instrument to measure

extremely small particles in a mixture of variable size particles. This is because the

total light scattering is dominated by large particles. Mie scattering occurs in the

case where the particle size is > λ/10, and the scattering light intensity appears a

complex function with respect to the scattering angle θ .

A laser, impinging onto a colloidal solution, is thus scattered by a collection

of colloidally suspended particles that are subjected to the Brownian motion. The

scattering light intensity measured with a detector at a given time is the superposition

of all electrical fields radiated from the illuminated particles. Since all particles

undergo Brownian motion, the scattered light intensity at the detector also fluctuates.

With electromagnetic theory and time dependent statistical mechanics, it is possible

to understand the molecular dynamics of these colloidally suspended particles from

light scattering. This is known as the dynamic light scattering (DLS), Quasi Elastic

Light Scattering or Photon Correlation Spectroscopy [1] [221].

DLS theory is based on two assumptions. The first assumption is that particles

undergo Brownian motion and the probability density function P of a particle at

position x and time t is given as [1] [15]

P (x, t|0, 0) = (4πDCx)−3/2e−x
2/4DCt, (2.12)

where DC is the diffusion constant of the colloidal solution [74] [15] [217]. The second
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assumption is that DC relates to the particle hydrodynamic radius (RH) by the

Stokes-Einstein equation [171] [47], i.e.,

DC = kBT/6πηRH , (2.13)

where η is the solution viscosity. The hydrodynamic radius is different from the

particle core radius. The hydrodynamic radius of a non-spherical particle is the radius

of a hypothetical spherical particle that has the same translational diffusion speed

as the non-spherical particle. So if the particle changes shape and causes a change

in translation diffusion speed, the hydrodynamic radius will change accordingly. A

change in the particle surface that affects the particle translational diffusion speed also

changes the hydrodynamic radius. For colloidally suspended monodisperse spherical

nanoparticles, RH is typically larger than the particle core radius, because the particle

surface is coated with surfactants. Commonly, these surfactants contribute a several

to 10′s of nm increase in RH , depending on surfactants used [236] [155].

Figure 2.11 shows a schematic of a common DLS instrument that detects the hy-

drodynamic radius of colloids. The DLS instrument measures time-dependent scat-

tering intensities I(t), which are used to compute DC . Then RH is calculated using

the equation (2.13). To measure I(t), an autocorrelator is employed to construct the

correlation function G(τ) of I(t) [15] [59] [171] , i.e.,

G(τ) = < I(t) · I(t + τ) >, (2.14)

where τ is the time difference between autocorrelator measurements. For a collection

of colloidal monodisperse particles in the Brownian motion, G(τ) decays exponentially

with respect to τ , and can be expressed as [15] [1]

G(τ) = AC[1 + BCexp(−2Γτ)], (2.15)

where AC and BC are the baseline and intercept of the correlation function respec-
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tively. Γ is given by

Γ = DCq
2, (2.16)

and

q = (4πn/λ) sin(θ/2), (2.17)

where λ is the laser wavelength, n is the refractive index of the colloidal solution and

θ is the scattering angle (figure 2.11). DC is obtained by fitting G(τ) as a function

of τ using equation (2.14). This algorithm is known as the Cumulants analysis [15]

[1]. Finally a mean size with an estimate of the distribution width (also called the

polydisparity index) is reported. The size distribution plots the relative intensity of

Photomultiplier

Laser

Scattering

Autocorrelator

θ

Liquid cell

Colloidal solution

Figure 2.11 Schematic of a DLS instrument.

light scattered by various size particles, also known as the intensity size distribution.

This distribution is converted to the volume and number size distributions according

to the Mie theory [15]. The average of the three distributions is called the Z-average

size distribution.
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2.4 Self-assembly of Magnetic Nanoparticles

Self-assembly is a thermodynamically driven process in which a disordered system

of pre-existing components (building blocks) forms an organized structure or pattern

as a consequence of specific, local interactions among the components themselves

[225] [233] [36]. In addition, a self-assembly process can be stimulated by evaporating

solvent, applying a nanostructured surface (i.e., template) or external fields (i.e., field-

directed assembly) [19] [81] [167] [99]. The field is employed to guide the nanoparticle

assembly process and control the ultimate structure or pattern that these building

blocks form, including their dimensionality and anisotropy. Self-assembly of magnetic

nanoparticles has attracted great interest recently as it may offer a convenient tool

for magnetic nanodevice fabrication [129] [19] [167] [186] [80].

2.4.1 Magnetic Nanoparticle Interaction

For a superparamagnetic nanoparticle with dipole moment m in an applied external

field H, the magnetic energy of the nanoparticle (U) is expressed as

U = −µ0m ·H. (2.18)

A magnetic force (Fm) that is exerted on the nanoparticle equals the gradient of U

[77] [100], i.e.,

Fm = −µ0∇(m ·H). (2.19)

Here, H is the magnetic field at the nanoparticle center, and can be produced by

another magnetic particle produces, applied externally, or be a superposition of both.

A spherical magnetic nanoparticle 1, containing spatially homogeneous magnetic mo-

ment m1, produces a magnetic field at a position r where the nanoparticle center is

considered as the origin of coordinates, and this magnetic field is expressed as [77]

[100]

H = 3(m1 · r̂)r̂−m1

4πµ0r3 , (2.20)
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where r̂ is the unit vector of r. Considering another spherical magnetic nanoparticle 2

that has a spatially homogeneous magnetic moment m2 at r, the dipole-dipole energy

U12 between these two magnetic nanoparticles is given by [77] [100]

U12 = m1 ·m2 − 3(m2 · r̂)(m2 · r̂)
4πr3 . (2.21)

The dipole-dipole interaction could be repulsive or attractive depending on the rel-

ative orientation of these two dipole moments [100]. This dipole-dipole interaction

results in an attractive force when m1, m2 are parallel, and a repulsive force when

anti-parrallel. For a same r, the attractive interaction is almost double the repulsion.

The dipole-dipole interaction increases linearly with respect to both m1 and m2, but

decays quickly as a function of r due to the 1/r3 term in equation (2.21).

External magnetic fields can help create nanoparticle arrays via dipole-dipole in-

teractions. Structures with orientation anisotropies can be induced with applied mag-

netic fields too. Typically this field-assisted self-assembly process is reversible, i.e.,

the structure organized can be disassembled by removing the external magnetic field.

For example, periodic arrays of photonic crystals with reversible tunability have been

self-assembled by applying external fields to colloidally suspended superparamgnetic

nanoparticles [71] [70] [117] [69].

2.4.2 Template-assisted Self-assembly

Recently, external fields have emerged as a key method to direct the assembly of

colloidal nanoparticles. Particles with specific physical properties can be designed to

maximize their interactions with external directing fields (e.g., magnetic, electric), or

directing surfaces (e.g., confined geometries, interfaces) [19] [81] [186]. It is possible

to create templates to produce the fields that assist magnetic particle assembly into

desired patterned structures. This technique is called template-assisted field-directed

self-assembly [80] [130]. Colloidal nanoparticle assembly in electric/magnetic fields
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occurs due to induced interactions. Manipulation and control over these colloidal

particles are provided by electrical/magnetic forces , as relatively strong forces are

required to assemble particles. For magnetic particles, the magnetic force depends on

the field gradient. Field gradients up to several 10 kT/m have been achieved using

methods such as an array of permanent magnets [65] [64] [43]. However, higher field

gradients are needed to achieve reliable and robust self-assembly of particles. Since

particles are also subject to other forces such as the viscous drag force, Brownian

force, and buoyancy force [64] [65]. Below I present evidence of ultra-high magnetic

field gradients up to 1×107 T/m that are created on a template, i.e., a hard disk drive

medium, via commercial magnetic recording technology. These field gradients can be

employed to assemble magnetic nanoparticles and the template can be reprogrammed

and reused.

2.5 Hard Disk Drives

We are in the information age and there are a variety of information data storage

systems available on the market. These systems include magnetic tape drives, mag-

netic hard disk drives, magnetic floppy disk drives, magneto-optic (MO) disk drives,

phase-change optical disk drives, semiconductor flash memory, magnetic random ac-

cess memory (RAM), and holographic optical storage [231]. To date, specifically

the hard disk drive is most widely used. This section provides an introduction to

hard disk drives and how the magnetic medium on the disk drive is used to create

ultra-high field gradients.

2.5.1 Overview

Hard disk drives have some advantages over other data storage systems such as large

storage capacity, low-cost, fast access times and a relatively mature manufacturing

infrastructure. Therefore, hard disk drives have dominated the mass information
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storage devices for decades. Figure 2.12 shows a photograph of the hard disk drive

with its key components:

1. Magnetic write/read heads and magnetic disks, also known as platters, which

store the recorded data. The platters are made of a non-magnetic material,

commonly aluminum alloy, glass or ceramic and are coated with a thin layer

(10 - 30 nm) of magnetic material such as CoCrPt, with an outer protection

layer. Each platter surface has a write/read head that is located on the trailing

edge of a slider (a platter has two surfaces and thus two write/read heads).The

head is too small to be visible to the eye. A slider is mounted to the end of

a stainless steel gimbal-suspension, forming a so-called head-gimbal assembly

(HGA). A pair of a write/read head and a recording disk surface is often called

a head-disk assembly.

2. Data detection electronics and write circuit, are mostly located on a printed

circuit board with many very-large-scale integration (VLSI) chips. These elec-

tronics and circuit control the disk rotation and actuator motion, and read/write

magnetic data.

3. Mechanical servo and control system, including spindles, actuators, suspensions,

and control chips. A spindle holds and spins the platters at varying speeds. An

actuator is employed to move the heads roughly radially across the platters as

they spin, and thus allows each head to access the entire surface of the platter.

4. Interface to microprocessor, located at one edge of the print-circuit board and

through which the microprocessor input information from or output information

to the disk drive.

Figure 2.13 shows the schematic principle of magnetic recording on longitudinal

media where the magnetization is parallel to the disk drive surface. The longitudinal
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Figure 2.12 Photograph of a magnetic hard disk drive.

medium stores nonvolatile data using two distinctive magnetization states (i.e., thin

arrows in figure 2.13). The medium magnetization directions can be modified back

and forth with a magnetic write head at a localized storage site (i.e., a magnetic

data “bit”). A write head is composed of yoke-shaped soft magnetic material which

has an air gap (called head gap). The yoke has coils wound around it to magnetize

a soft magnetic material with low coercivity and high permeability. During a write

process, a current passes through the coils to create a write field in the medium near
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the head gap. The write field is larger than the medium coercivity so that the bit

underneath the write head is magnetized in the field direction. By changing the

write current polarity, the other state can be written. There are junctions between

the neighboring oppositely magnetized bits, called transitions. The transition length

is ∼ 10 nm for longitudinal magnetic recording media [231], but not shown in figure

2.13 for convenience.

Write

Current

Medium

Write Head

Write current injection

Velocity ~ 10m/s

0V

Oersted field

Figure 2.13 Schematic diagram showing the magnetic recording on longitudinal
magnetic recording media.

During the disk drive operation, the disk spins at a constant speed ∼ 10 m/s. The

self-pressured air bearing existing between the spinning disk and the slider causes a

constant separation (called the fly height) between them. The fly height is on the

order of 25 nm. Data can be written in different data tracks by moving the slider in

the radial direction.

2.5.2 Longitudinal Magnetic Recording Media

Magnetic recording medium in hard disk drives is composed of continuous magnetic

thin films. The permanent magnets have coercivities large enough to maintain the
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magnetization state for a long time after being written. A longitudinal magnetic

recording medium has multiple layers stacked together as shown in figure 2.14.

~3nm Lubricant

~0.8mm Al Substrate 

~10um NiP

~150nm Cr

~30nm Magnetic Thin Film
~15nm Overcoat

Figure 2.14 Schematic diagram a longitudinal magnetic medium on disk drives.

The aluminum substrate is plated with an amorphous NiP undercoat to make the

disk rigid, smooth, and properly textured. A chromium underlayer is often used to

control magnetic properties and microstructures of the magnetic recording layer. The

magnetic layer (typically Co-based alloy) is covered by a carbon overcoat layer and

lubricant. The last two layers are necessary for the tribological performance of the

head-disk interface and for the protection of magnetic layer. Tribology is the science

and engineering of interacting surfaces in relative motion [17]. The disk must rotate

underneath the flying head at a high speed.Note that the fly height is the distance

between the head air bearing surface to the disk top surface, while the magnetic

spacing is the distance between head pole tips and the magnetic layer. The fly height

is only a fraction of the magnetic spacing, and the latter is most relevant in the write

and read processes.
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2.5.3 Field and Field Gradients on Longitudinal Media

Figure 2.15 shows a schematic of a magnetic transition. The magnetization directions

of the two data bits are parallel to the x axis, and the z axis is normal to the disk

drive surface. The medium film has a finite thickness (δ ∼ 30 nm commonly) in the

z direction.
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Figure 2.15 Schematic of magnetic transitions on a longitudinal magnetic medium.

Fields of Step Transitions

First, let us consider a single step transition on the longitudinal magnetic medium

(figure 2.15). Therefore, the magnetization of the magnetic medium can be expressed

as
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M(x) =


−Mr, x < 0 and− δ/2 ≤ z ≤ δ/2,

Mr, x > 0 and− δ/2 ≤ z ≤ δ/2,
(2.22)

where Mr is the remanence magnetization of the magnetic medium. Bound currents

(in current picture) or magnetic charges (in charge picture) methods can be used to

calculate the magnetic field Hxz at a point (x,z) that is produced by the transition

[77] [100]. The charge picture is more convenient and thus widely used. This charge

picture can be understood by superposing magnetic fields that are produced by all

point magnetic charges in the whole space.

A point charge qm at a position r′ produces a field H at r, which is written as [77]

[100]

H = qm
4π

r− r′

|r− r′|3
. (2.23)

Therefore, the magnetic field H(r) by superposing a distribution of volume charge

with density ρm and surface charge with density σm is

H(r) = 1
4π

(∫∫∫
ρm

r− r′

|r− r′|3
d3r′ +

∫∫
σm

r− r′

|r− r′|3
d2r′

)
. (2.24)

Insert ρm = ∇ ·M(r′) and σm = n′ ·M(r′) [77] in equation (2.24), one obtains

H(r) = 1
4π

[∫∫∫ (
∇ ·M(r′)

) r− r′

|r− r′|3
d3r′ +

∫∫ (
n′ ·M(r′)

) r− r′

|r− r′|3
d2r′

]
. (2.25)

In the case of a transition given by equation (2.22), ∇ ·M(r′) = 0 and there is a

surface charge density σm = −2Mr occurring at the transition center (i.e., x = 0)

extending from −δ/2 ≤ z ≤ δ/2 in the z direction. Therefore, equation (2.25) reduces

to

H(r) = −Mr

2π

∫∫ r− r′

|r− r′|3
d2r′. (2.26)
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Assuming the magnetic medium extends infinitely in the y direction and according

to charge symmetry with respect to the x axis, the field in the y direction Hy = 0,

i.e., H(r) lies in the x-z plane. Using equation (2.26), Hx and Hz are computed as

Hx(x, z) = −Mr

2π

∫ δ/2

−δ/2

∫ ∞
−∞

x(
x2 + (y − y′)2 + (z − z′)2

)3/2dy
′dz′, (2.27)

and

Hz(x, z) = −Mr

2π

∫ δ/2

−δ/2

∫ ∞
−∞

z − z′(
x2 + (y − y′)2 + (z − z′)2

)3/2dy
′dz′. (2.28)

For simplicity and without losing the generality, y can be set = 0. Using the following

integral equations (note that b and c are real numbers),

∫ 1
(bx2 + c)3/2dx = x

c(bx2 + c)1/2 , (2.29)

∫ 1
(x2 + b2)dx = 1

b
arctanx

b
, (2.30)

and ∫ x

(bx2 + c)dx = 1
2b ln(bx2 + c), (2.31)

one can show that equations (2.27) and (2.28) can be further simplified as

Hx(x, z) = −Mr

π

[
arctan

(
z + δ/2

x

)
− arctan

(
z − δ/2

x

)]
, (2.32)

and

Hz(x, z) = −Mr

2π ln
[

(z + δ/2)2 + x2

(z − δ/2)2 + x2

]
. (2.33)

Note the surface charge density at the transition σm = −2Mr, therefore, the

magnetic field components at r for a unit surface charge at the step transition, i.e.,

Hx and Hz divided by σm, are expressed as respectively,

Hustep
x (x, z) = 1

2π

[
arctan

(
z + δ/2

x

)
− arctan

(
z − δ/2

x

)]
, (2.34)
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and

Hustep
z (x, z) = 1

4π ln
[

(z + δ/2)2 + x2

(z − δ/2)2 + x2

]
. (2.35)

Equations (2.34) and (2.35) are valid both inside and outside of the magnetic medium.

Fields and Field Gradients of Transitions with Finite Length

In reality, the transition is not single step, but has a finite length, also called a

transition parameter(a) [231]. A real magnetization transition in the longitudinal

medium is traditionally modeled by the arctangent function [16], i.e.,

M(x′) = 2Mr

π
arctan

(
x′

a

)
. (2.36)

Figure 2.16 shows the magnetization as a function of x′ for a step and an arctangent

transition with a 10 nm transition parameter (i.e., a = 10 nm). Assuming the finite

transition does not change the fields in both y and z directions, the magnetic charge

at each location x′ can be regarded as an equivalent of a step transition with a surface

charge density of −∂M(x′)/∂x′. Therefore, equations (2.34) and (2.35) are used to

calculate magnetic fields at (x,z) [i.e., HS
x (x− x′, z) and HS

z (x− x′, z)] produced by

such a step transition located at x′. One has

HS
x (x− x′, z) = −∂M(x′)/∂x′

2π

[
arctan

(
z + δ/2
x− x′

)
− arctan

(
z − δ/2
x− x′

)]
, (2.37)

and

HS
z (x− x′, z) = −∂M(x′)/∂x′

4π ln
[

(z + δ/2)2 + (x− x′)2

(z − δ/2)2 + (x− x′)2

]
. (2.38)

Using the superposition principle, one can compute the total magnetic field produced

by a finite transition as

Hx(x, z) =
∫ ∞
−∞

HS
x (x− x′, z)dx′, (2.39)

and

Hz(x, z) =
∫ ∞
−∞

HS
z (x− x′, z)dx′. (2.40)
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Figure 2.16 Arctangent (solid curve) and step (dotted curve) magnetization
transtions.

Take the partial derivative of the equation (2.36) with respect to x′, one obtains

∂M(x′)
∂x′

= 2Mr

π

(
a

x′2 + a2

)
. (2.41)

Insert equation (2.41) into (2.39) and (2.40), finally, one obtains,

Hf
x (x, z) = Mr

π

[
arctan

(
a+ |z|+ δ/2

x

)
− arctan

(
a+ |z| − δ/2

x

)]
(|z| ≥ δ/2),

(2.42)

and

Hf
z (x, z) = ±Mr

2π ln
[

(a+ |z| − δ/2)2 + x2

(a+ |z|+ δ/2)2 + x2

]
(+ for z ≥ δ/2 and − for z ≤ −δ/2).

(2.43)

Figure 2.17 (a) and (b) show magnetic fields Hf
x and Hf

z as function of x at

different z positions respectively. Hf
x and Hf

z are computed using parameters a =

10 nm, δ = 30nm, and Mr = 4.5×105 A/m that is determined by VSM. Note the

z position of the center medium plane is at zero. Hf
z is maximum at x = 0, and
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Figure 2.17 (a) Hf
x vs x at z = 20, 30, 50 and 80 nm. (b) Hf

z vs x at z = 20, 30,
50 and 80 nm.

decreases as x is increased. Hf
x displays a little different behavior, i.e., Hf

x = 0 at x

= 0, increases first and then decreases as x is increased. Both Hf
x and Hf

z appear

symmetric with respect to the x axis and decay with z. For example, above the

transition, Hf
z is ∼ 2000 G at a 20 nm z and reduces to ∼100 G as z is increased

to 500 nm. If there are superparamagnetic nanoparticles approaching the magnetic
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Figure 2.18 (a) Hxx vs x at z = 20, 30, 50 and 80 nm. (b) Hzz vs z at x = 0, 10,
20 and 30 nm.

medium surface, Hf
x and Hf

z will magnetize the nanoparticles in x and z directions

respectively. The magnetic moment of the nanoparticle depends on the its position

with respect to the medium surface and the transition.

Figure 2.18 shows field gradients Hxx as function of x at different z positions and
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Hzz as function of z at different x positions, where Hxx and Hzz are respectively

computed as

Hxx = ∂Hf
x (x, z)
∂x

, (2.44)

and

Hzz = ∂Hf
z (x, z)
∂z

. (2.45)

Ultra-high field gradients Hxx and Hzz up to ∼1 ×107 T/m exist above the magnetic

medium surface around the transition. Hxx is largest at x = 0, and decreases quickly

as x is increased [figure 2.18(a)]. Hzz is largest at z = 0, and decays quickly with

respect to z [figure 2.18(b)]. These field gradients apply magnetic forces on the

magnetized nanoparticles and thus direct the nanoparticle motion.

Figure 2.19 (a) and (b) show x and z components of the magnetic force (Fx and

Fz) exerting on a 10 nm diameter Fe3O4 nanoparticle by the field gradients present

near the magnetic medium surface. Fx and Fz are calculated using an effective dipole

model [63] [64] and the equation (2.19). A product of x and Fx is negative as shown

in figure 2.19 (a), meaning the nanoparticle moves towards the transition (i.e. x = 0).

Similarly, Fz drives the nanoparticle towards the medium surface. Therefore, these

field gradients direct the self-assembly of magnetic nanoparticles onto the transition.
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Figure 2.19 (a) Fx vs x at z = 20, 30, 50 and 80 nm for a 10nm diameter
magnetite nanoparticle. (b) Fz vs z at z = 0, 10, 20 and 30 nm for a 10nm diameter
magnetite nanoparticle.
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Chapter 3

Self-assembly of All-nanoparticle Diffraction

Gratings

The previous section described the ultra-high field gradients present above magnetic

transitions on longitudinal magnetic media. These field gradients can direct self-

assembly of magnetic nanoparticles onto transitions. Therefore, magnetic nanopar-

ticles can be self-assembled into patterned microstructures on the magnetic medium

by patterning magnetic transitions. In this chapter, I demonstrate this technology

can be employed to nanomanufature all-nanoparticle diffraction gratings using longi-

tudinal media [243]. Perpendicular media are also employed and yield similar results.

First I show the nanomanufacturing process. Second, I provide results of spectral

measurements and calibration of these nanomanufactured gratings. Third, I present

evidence for existence of a useful property that these gratings possess. Finally, I

discuss the repeatability of the nanomanufacturing technique, demonstrating com-

mercial potential of this technique for fabricating diffraction gratings and complex

functional materials for future technological applications.
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3.1 Grating Nanomanufacturing Process

3.1.1 Grating Self-assembled onto Magnetic Medium

Surface

Using magnetic recording to create nanoscale templates, magnetic nanoparticles are

self-assembled onto disk drive magnetic media. Equally-spaced, oppositely-magnetized

regions (i.e., magnetic bits) are recorded onto a 95 mm diameter longitudinal disk

drive medium (i.e., a disk) via magnetic recording with a conventional read write

head. The length of these regions are precisely controlled during the recording pro-

cess to yield equal spacing lines patterned on the disk surface. Enormous magnetic

field gradients exist above transitions. These field gradients exert a force on col-

loidally suspended superparamagnetic nanoparticles, i.e., a ferrofluid, deposited on

the media. This spatially-localized magnetic force attracts the nanoparticles to these

transitions, and by creating arrays of transitions over the disk surface, nanoparticles

are precisely assembled into large-area patterned materials.

Pattern sizes and shapes are controlled by magnetic recording, with the magnetic

medium acting as a template for nanoparticle assembly that can be both reused and

reprogrammed with different patterns. For the diffraction gratings that are manu-

factured using the template, the lines lie parallel to the disk radius with the grating

spacing along the disk circumference. Our gratings are written at a 28 mm radius,

and over a 0.65 x 0.65 mm2 illuminated area [e.g. 0.65 mm Gaussian full width at half

maximum (FWHM) of our HeNe laser beam], the saggita for a 0.65 mm long chord is

2 µm. Therefore, relative to a 0.65 mm wide band, the deviation of our grating from

square along the circumferential direction is ∼0.3% and can be neglected. Moreover,

xy rectilinear recording can also be performed using a contact write read tester [144].

Figures 3.1(a)-3.1(d) show the entire process schematically.

As shown in figure 3.1 (a), magnetic recording media are diced into ∼12 mm di-
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ameter circular coupons. After cleaning a coupon, ∼0.5 mL of diluted ferrofluid (∼10

- 20 nm diameter cobalt ferrite (CoFe2O4) nanoparticles with ∼10 µg/mL nanopar-

ticle concentration) is pipetted onto the coupon. These CoFe2O4 nanoparticles are

provided by the Rinaldi group at University of Florida. The nanoparticles suspended

in the ferrofluid just above the coupon surface are magnetized by the transitions’

fields, and are then attracted to the transition region [“T" in figure 3.1(a)-3.1(c)], by

the field gradient. The ferrofluid solution remains on the coupon for a length of time,

e.g., 60 minutes, and is then removed by tilting the coupon slowly. Nanoparticles coat

the transitions on the coupon [figure 3.1(b)]. A representative dark-field microscope

image of the nanoparticle patterns assembled on the coupon is shown in figure 3.1(e).

3.1.2 Pattern Transfer of Gratings

After imaging the assembled nanoparticles a liquid polymer solution is spin-coated

onto the coupon surface [figure 3.1(c)]. The polymer (Diskcoat 4220 from General

Chemical Corp., Brighton, MI) is diluted with DI water (Diskcoat:DI water = 4:1)

and spun at 2000 rpm for 20 s, and the resulting film is ∼ 1.1 µm thick as determined

using both stylus and optical profilometry. Varying the ratio of Diskcoat to DI water

enables different polymer film thicknesses. After curing the polymer thin film for

15 minutes in air at room temperature, the polymer-nanoparticle assembly is peeled

from the coupon surface with adhesive tape [figure 3.1(d)]. This peeling transfers the

nanoparticle patterns to the polymer film. The adhesive tape has a 5 mm diameter

central hole, yielding a window of suspended film containing patterned nanoparticles

[figure 3.1(f)]. Figure 3.1(g) shows a dark-field image of the patterned nanoparticles

as embedded in the suspended film after peeling. Grating spacing (d) is optically

measured using a 100X objective lens, and, assuming equal spacing for these features,

multiple measurements of 50 µm patterned regions (L = 50 µm) yield 742 ± ∼12

nm. Similar measurements on the peeled patterns yield 750 ± ∼12 nm. The 12 nm
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Figure 3.1 Diffraction grating nanomanufacturing using programmable magnetic
recording and pattern transfer. (a)-(d) Schematic diagrams showing entire
nanomanufacturing process. Gray ellipses: projections of coupons. Parallelograms:
projections of magnetized regions on coupons and arrows enclosed denote
magnetization directions. T: magnetic transition. Black dots: superparamagnetic
nanoparticles. Yellow ellipses: projections of polymer thin films. (e) Dark-field
optical image of nanoparticle arrays assembled on a coupon. (f) Polymer film
containing patterned nanoparticles after peeling. (g) Dark-field optical image of the
black square in (f) showing the assembled nanoparticle grating lines embedded in
the polymer film.

error bars (σ) are obtained via

σ = LδN

N2 , (3.1)
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where N is the average groove number within the 50 µm patterned regions and δN is

the standard deviation in N measurements. For peeled patterns, N = 66.4 and δN

= 1.03. As no nanoparticles are observed on the coupon after peeling, and with the

same pattern spacing after transfer within experimental error, this approach yields

near-perfect transfer of the assembled grating from the coupon to the film.

3.1.3 Alternative Methods for Removing fluid off Coupon

Surfaces

In addition to using slow tilting to remove the remaining fluid on the coupon by a

slow tilting, other methods include a water rinse (WR), and stirring + WR. Table

3.1 lists experimental results obtained using these methods. In these experiments,

both perpendicular and longitudinal magnetic media, and three kinds of nanoparticle

suspensions are employed. One is the "EMG" nanoparticle suspension, created by

diluting 10 µL stock solution of commercial ferrofluid (Ferrotec, Nashua, NH, EMG-

707) with 20 mL deionized (DI) water. The EMG ferrofluid has a 0.001% volume

concentration of ∼13 nm diameter Fe3O4 nanoparticles. The second is a filtered EMG

suspension, which is made by filtering the EMG suspensions with a VWR syringe filter

containing 200 nm polytetrafluoroethylene membrane. The third is a nanoparticle

suspension (”mixture“) that is generated by mixing 2 mL EMG suspensions with

87.5 uL phosphate buffer saline (PBS). PBS is a buffer solution commonly used in

biology research. It is a water-based salt solution containing sodium chloride, sodium

phosphate, potassium chloride and potassium phosphate. The buffer’s phosphate

groups help to maintain a constant pH. The ion concentrations of the solution usually

match those of the human body. The reason for using the PBS will be clear shortly.

The "Med." column denotes which magnetic medium is used, where P and L ab-

breviate perpendicular and longitudinal medium respectively. The "Method" column

indicates the method that is employed. WR represents the nanoparticle suspension is
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Table 3.1 Experimental results for self-assembling nanoparticles onto the magnetic
medium surface using different methods. Med.: abbreviation for medium. P:
perpendicular magnetic medium. L: longitudinal magnetic medium. EMG: dilute
EMG 707 suspension. Mixture: 2 mL EMG suspension mixed with 87.5uL PBS.
WR: Water Rinse.

Run Med. Time Suspension Method Image Results
1 P 200s Mixture WR SEM Yes, Clean
2 L 200s Mixture WR SEM Yes, Clean
3 P 200s EMG WR DF No
4 L 200s EMG WR DF No
5 L 200s EMG Tilting DF No, 3 droplets
6 L 200s EMG WR DF No, 1 droplet
7 L 200s Mixture WR DF Yes, Clean
8 L 15min EMG WR DF No, 2 droplets
9 L 20min EMG WR DF No, 4 droplets
10 L 60s Mixture WR DF+SEM Yes, Clean
11 P 60s Mixture Stirring+WR DF+SEM Yes, Clean
12 L 15min Mixture Tilting SEM Yes, Fairly Dirty
13 P 15min Mixture Tilting SEM Yes, Dirty
14 L 15min EMG Tilting SEM Yes, Fairly Dirty
15 L 15min EMG Tilting SEM Yes, Fairly Dirty
16 L 15min EMG WR SEM No, 1 droplet

pipetted onto the coupon. After a length of coating time, most of the fluid remaining

on the coupon is removed by vacuuming the fluid off with a pipette. Then the coupon

is rinsed with DI water for 30 s and dried in a clean hood. "Stirring + WR" means the

coupon is dipped and stirred in the nanoparticle suspension. After a coating time, the

coupon is taken out of the suspension and a WR procedure is followed. The "Image"

column illustrates how the self-assembled patterns are observed. DF and SEM de-

note dark-field optical imaging and scanning electron microscopy respectively. In the

"Results" column, "yes" indicates nanoparticle patterns are observed on the coupon.

"Droplets" means the coupon surface mainly has no patterns of nanoparticles except

some small isolated areas (typically < 1 mm2) that originate from the fluid droplets

remaining on the surface as shown in figure 3.2. These two droplets are obtained in

run 8. For the WR method and EMG suspension, both longitudinal and perpendicu-
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Figure 3.2 Two representative dark-field optical images, illustrating droplets that
remain on the coupon surface after nanoparticle coating.

lar magnetic media do not generate patterns on the medium surface. For the tilting

method and EMG suspension, some runs create patterns, others do not. Another run

is conducted to investigate the nanoparticle coating in a fluid cell for filtered EMG

suspensions. A laser diffraction signal is detected from the nanoparticle grating as

assembled on the magnetic medium that is located in a fluid cell (chapter 4 discusses

this technique in detail). These filtered nanoparticles have a 50 nm hydrodynamic

diameter with ± 10 nm standard deviation as determined by dynamic light scat-

tering, and have the smallest hydrodynamic diameters among all suspensions used.

These filters remove large aggregates of nanoparticles. This diffraction measurement

shows filtered EMG nanoparticles are attracted onto the medium surface. Therefore,

unfiltered EMG nanoparticles coat on the medium surface too. It is deduced exper-

imental runs that do not produce patterns are because of the method used, i.e., the

method removes the coated nanoparticles during processing. This indicates that, in

general, EMG suspensions assemble, but do not stick well to the medium surface.

Here patterns observed in droplets appear to originate from nanoparticles that re-

main in fluid droplets during the solvent evaporation, while the originally attracted

nanoparticles are removed during the processing. All experiments performed with

the mixture suspension show patterns, demonstrating nanoparticles in the mixture
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Figure 3.3 A representative SEM image for run 1.

suspension stick well to the coupon. For example, the disturbance occurring in the

water rinse procedure removes coated particles from the EMG suspension, but not

the mixture.

Figure 3.3 and 3.4 show representative SEM images of patterns that are created

using the mixture suspension and tilting method. Note the pattern width in figure

3.4 is larger than that in figure 3.3, which is mainly caused by a longer coating

time (900 s vs. 200 s). Figure 3.3 uses WR, while figure 3.4 doesn’t. There are

nanoparticles or nanoparticle aggregates existing between the grating lines, which

may be called defects, in both figure 3.3 (rare) and 3.4 (plenty). Defects may originate

from nanoparticles that remain in the fluid during the tilting. These nanoparticles

remain on the coupon surface randomly, since they are not attracted onto the grating
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Figure 3.4 A representative SEM image for run 13.

lines (i.e., transitions) during the short drying time (in the order of 10 - 30 s). This

problem does not occur in the water rinse method nearly, since the coupon is rinsed

with the DI water before dying. The WR removes most nanoparticles that do not

stick well on the surface. This demonstrates a WR leads to a clean grating fabrication.

3.2 Spectral Measurement and Calibration of Nanomanufactured Diffrac-

tion Gratings

This section discusses how these nanomanufactured diffraction gratings are character-

ized using an experimental apparatus built in the laboratory. The grating efficiency

and spectral resolution of these gratings are also discussed.
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3.2.1 Experimental Apparatus

Figure 3.5 demonstrates operation of our nanomanufactured gratings in an optical

spectrograph. A grating is mounted on a rotation stage with the lines of nanoparticles

in the y-z plane [front view in figure 3.5]. The rotation stage can orient the grating
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Figure 3.5 Schematic of experimental apparatus for Spectral measurements. Left
panel: schematic diagram of polymer diffraction grating (DG) in front view. Right
panel: schematic diagram of the measurement apparatus in top view. Light
illuminates DG center (O) at normal incidence and diffraction spectra are recorded
using a line camera (LC) in reflection mode. Red (green and blue) solid lines depict
the diffracted red (green and blue) beam.

such that the nanoparticle lines are parallel to the z-axis. Diffraction spectra are

obtained using the experimental geometry shown in figure 3.5 (Top View), with light

incident onto the grating surface at normal incidence. Four optical sources [HeNe gas

laser (632 nm), green (532 nm) and blue (405 nm) diode lasers and a tungsten-halogen

bulb are aligned with the x-axis for illuminating the grating identically at the origin

(O). A photodetector is used to monitor the intensity of laser transmission and verify

power stability. A charge-coupled device (CCD) line camera (LC) is mounted on a

55



www.manaraa.com

xy-translation stage. The LC incorporates a 3045 pixel CCD array (7 µm horizontal

pixel size and ∼21.3 mm long in total) with 350 - 1100 nm spectral range. For all

spectral measurements the pixel line array is parallel to the x-axis and vertically

aligned to be in the same plane as the incident light.
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Figure 3.6 Representative spectra measured from a nanomanufactured diffraction
grating in reflection mode. (a) Diffraction spectra of 405 nm, 532 nm and 632 nm
lasers that are used to calibrate the diffraction grating spectrum (LC is at x = 4.0
mm and y = 13.7 mm). Top axis denotes LC pixel positions, and bottom axis
calibrated to yield wavelength in nm. (b) Solid line: diffraction spectrum for a
tungsten-halogen bulb measured with a 1.1 µm thick grating. Dotted line:
diffraction spectrum for the tungsten-halogen bulb measured with a commercial
spectrometer. Inset: photograph of tungsten-halogen spectrum measured with the
1.1 µm thick grating.
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3.2.2 Results of Spectral Measurements

Figure 3.6(a) shows representative first-order diffraction spectra for a 1.1 µm thick

polymer grating for 405, 532, and 632 nm laser lines, which are employed for calibrat-

ing the spectrograph. The calibration is performed by finding the angle of diffraction

for the three reference laser lines as follows. The LC is translated by a known ∆y

and the corresponding peak position shift ∆x is recorded. This calculation for the

three lines is performed to determine absolute x and y positions of LC pixels. Both

absolute and relative x and y LC positions are related to the angle of diffraction β,

via

tan β = ∆y
∆x = y

x
. (3.2)

The diffraction angle is related to grating spacing and wavelength by the diffraction

grating equation [172]

d(sinα + sin β) = mλ, (3.3)

where α is the incident angle, = 0 in our geometry, λ is the wavelength and m is the

order number, = 1. λ is fitted as a function of β obtaining d = 770 ± 10 nm. This

result agrees within error bars with the 50 µm scale bar measurements discussed in

section 3.1.2. Using y = 13.7 mm and d = 770 nm, Eq. (3.2) and Eq. (3.3) allow us

to convert an arbitrary x-position on the LC into units of wavelength to generate the

lower axis in figure 3.6(a)-3.6(b). The error in this spectral calibration is ∼13 nm,

which is calculated using the pixel positions that correspond to the 550 nm center

wavelength of our detection window. This 13 nm error arises from combining the

10 nm uncertainty in our measurement of d with 7 µm and 12 µm uncertainties

in LC pixel position and y-stage translation respectively. The solid line in figure

3.6(b) shows the diffraction spectrum for a tungsten-halogen bulb recorded with our

spectrograph. Five peaks at ∼425 nm, 455 nm, 495 nm, 535 nm, and 595 nm are
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observed. The inset to figure 3.6(b) shows a photograph of the tungsten-halogen

spectrum displayed on a white card for reference. The diffraction spectrum for the

tungsten-halogen bulb recorded with a commercial spectrometer (Ocean Optics, Red

Tide USB650 with ∼2.0 nm optical resolution) is also shown [the dotted line in figure

3.6(b)] for comparison. The two spectra match closely, however the solid line peaks

for the nanomanufactured grating are more prominent (∼2x).

3.2.3 Efficiency of Nanomanufactured Diffraction Grating

The absolute efficiency of these nanomanufactured gratings measured with the HeNe

laser (10 mW) is 0.071 ± 0.002%. An asymptotic theory predicts our gratings, assum-

ing the lamellar grating with ∼88 nm groove width as determined by analyzing the

line profile of high resolution scanning electron microscopy images and 30 nm groove

depth, have a 0.45% absolute efficiency in first-order Littrow mounts for the HeNe

laser [143]. While the measured absolute efficiency is only ∼16% of that predicted,

the absolute efficiency can be enhanced by tuning the groove width to the pitch ra-

tio [143]. Note that the gratings have no reflectivity enhancing layers and still the

diffracted signal is easily detected with our CCD line camera. By sputtering 20 nm of

Au on a grating, an order of magnitude efficiency improvement is achieved, suggest-

ing that further optimization of the fabrication process could yield better diffraction

efficiency.

3.3 Concave Diffraction Gratings

3.3.1 Curvature Measurements and Control

While calibrating the spectra discussed above, a y-translation also causes a change in

spectral peak intensity and width. Figure 3.7 shows a representative set of diffraction

peaks on the LC during a series of y translations using the 532 nm laser. Starting at x
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= 6 mm, the peak intensity first increases until x = 12.7 mm and then decreases until

x = 18.5 mm. Similarly the spectral width decreases and then increases as x increases

with the minimum peak width corresponding to the maximum intensity. Figure 3.7

labels the corresponding y-position in millimeters above each peak. Changing peak

intensity and width as a function of x and y lead to the hypothesis that the grating is

focusing the spectrum, and that our gratings are not planar but concave. As the LC

records a projection parallel to the incident beam and β remains the same regardless

of LC position, the peak center position is accurately detected by the LC. Therefore,
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Figure 3.7 Representative 532 nm laser diffraction spectra obtained from
nanomanufactured concave gratings demonstrating the grating is concave. The
spectra are recorded while translating the LC in the y direction demonstrate
changes in both peak intensity x-position (bottom axis) and width (corresponding y
positions in millimeters are shown above each peak).

the spectral focus as a function of x and y can be precisely obtained by recording

spectral profiles while translating the y stage. This measurement configuration is
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known as the Wadsworth geometry [230, 45].

Figure 3.8 shows a concave grating geometry, where the origin O of the Cartesian

system is at the center of the grating, the x-axis is the grating normal and the z-axis

is parallel to the grating grooves. As for the plane grating, the light path difference

for neighboring grooves must be an integral multiple of λ so that the diffracted waves

are in phase. The light path difference for any two grooves of the concave grating

separated by w is (w/d)mλ. Thus for light from point A(x0, y0, z0) with incident angle

α on any point P (u,w, l) of the concave grating, where w/d is an integral number,

forms a spectral image at point B(x, y, z) with diffraction angle β, light has

o

α

β

A(x0,y0,z0)

B(x,y,z)

x

y

z

C(R,0,0)

P(u,w,l )
Figure 3.8 Schematic diagram of an optical system showing image formation with
a concave grating.

to satisfy the light path function (F) [163]
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F =< AP > + < PB > +mwλ
d

, (3.4)

where < AP > (< PB >) is the distance between points A and P (P and B).

According to Fermat’s principle of least time, point B is located such that F is an

extreme for any point, P , and all extremes for focusing light from A at B must be

equal[163]. Thus the condition for focusing light that diffracts from grating points

along w [i.e., y direction in figure 3.8] is

∂F

∂w
= 0. (3.5)

Since the LC pixel array records spectra only along the x-axis, one expands Eq. (3.4)

in a series with respect to w [163], and inserts Eq. (3.4) into Eq. (3.5) using α =

0 and < AP > = ∞ (Wadsworth geometry). Ignoring orders above first in w [163],

one finds y as a function of x and for convenience this function is expressed in terms

of y and β using Eq. (3.2)

y = R
sin β cos2 β

1 + cos β , (3.6)

where R is the radius of curvature of the grating.

Eleven gratings, 3 are 0.45 µm thick, 5 are 1.1 µm thick, and 3 are 6.25 µm

thick, are nanomanufactured. Their focal positions measured with 632 nm, 532 nm,

and 405 nm lasers are shown in figure 3.9 as triangles, dots, and crosses for each

thickness respectively. These data are then fitted with Eq. (3.6) obtaining R = 43.1

± 0.7 mm, 57.1 ± 1 mm, and 71.6 ± 0.8 mm for 0.45 µm, 1.1 µm, and 6.25 µm

thick gratings respectively [solid lines in figure 3.9]. Thicker films have larger radii

of curvature, meaning the films are flatter, while thinner films have smaller radii of

curvature, meaning the films are more curved [inset to figure 3.9]. The focal positions

of the images diffracted by these three different curvatures as indicated in figure 3.9

show nearly equal diffraction angles [β in Eq. (3.3)] for each laser. This result further
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Figure 3.9 Curvature inherent in our nanomanufactured concave gratings. Red,
green and blue dots (crosses and triangles) show focal positions for 632 nm, 532 nm
and 405 nm lasers respectively. Polymer film thicknesses are indicated in the legend.
Three solid lines show fitted trajectories of focal positions for the three grating
thicknesses with fitted radii of curvature, R, as indicated. Red (green and blue)
dashed lines display linear fits of diffraction angles for the 632, 532, and 405 nm
lasers. Inset: R vs grating thickness.

confirms that our gratings have nearly identical spacings for differing polymer film

curvatures [dotted lines drawn along a constant angle in figure 3.9]. Further, the

zeroth-order term of an expansion of F with respect to w leads to the diffraction

grating equation [i.e. Eq. (3.3)], demonstrating that grating curvature does not

affect the diffraction angle, only the focused spectrum position. The nearly identical

spacings and < 2% variations in R measurements show these nanomanufactured

gratings are highly reproducible. These measurements demonstrate that not only

does our nanomanufacturing process create repeatable concave gratings, but also
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allows control of the radius of curvature. This inherent curvature eliminates a second

curved mirror that is found in the Czerny-Turner [197], Ebert-Fastie [51], and Littrow

monochromators [150].

3.3.2 Spectral Resolution of Nanomanufactured Diffraction

Gratings

The spectral bandpass (BS) of our concave grating spectroscopic system in the

Wadsworth geometry is imaging limited, since there is no entrance slit and the line

camera pixel size is 7µm,

BS = PFWS, (3.7)

where PF and WS are the plate factor for concave gratings and the entrance slit

width respectively[169]. Using 0.65 mm for our entrance slit, i.e. WS = 0.65 mm,

and with ∼2 x 2 mm2 grating size, i.e. much smaller than R, the Rowland circle

concave grating PF [131] with an extra factor of sin β to account for the orientation

of the LC pixels parallel to the x-axis is employed. Thus one has

BS = dWS cos β sin β
mR

. (3.8)

For 57.1 mm radius gratings, Eq. (3.8) predicts BS = 4.1 nm for the HeNe laser,

and the measured FWHM of the HeNe diffraction peak is 4.2 nm, i.e. suggesting

our measured resolution agrees closely with that predicted for our particular imaging

geometry. The measured and predicted resolutions agree closely for all three radii of

curvature.

3.4 Repeatability of Nanomanufactured Diffraction Gratings

Figure 3.10(a) shows tungsten-halogen spectra for 5 nominally identical 1.1 µm thick

polymer film gratings. The spectra are plotted with a vertical offset for clarity. Con-

cave gratings focus different wavelength light at different y positions, and therefore
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Figure 3.10 Repeatability of tungsten-halogen spectra. (a) Tungsten-halogen
spectra obtained from 5 nominally identical 1.1 µm thick concave gratings. All
spectra have 5 peaks and show similar spectral peak positions, demonstrating the
high repeatability of tungsten-halogen spectra. (b)-(f) 10 nm peak-peak dot plot
showing fitted peak positions for 5 gratings, demonstrating ∼ 3 nm average
standard deviation.

spectra recorded on the LC are not linearly scaled with respect to y. For the 532

nm laser the diffraction foci for these 5 gratings are slightly different, and therefore

tungsten-halogen spectra are recorded with the LC located at the average position, y

= 11.33 mm. Each spectrum has 5 peaks, and each peak’s position is fitted using the

Lorentzian function [44], as displayed in figure. 3.10(b)-3.10(f). Figure 3.10(b) shows

that the first peak of 5 identical gratings occurs at nearly the same spectral position

with <10 nm variation. Figure 3.10(c)-3.10(f) show almost same behavior as Fig.

3.10(b) with ∼ 3 nm average standard deviation. Thus multiple grating studies both

for differing radii of curvature and of tungsten-halogen spectra together demonstrate

that our nanomanufacturing process is highly repeatable.
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3.5 Further discussion about grating curvatures

The polymer film curvature can be observed under optical microscopy. Figure 3.11

shows a representative dark-field optical image of grating lines embedded in a polymer

film. After focusing on the center part of the patterns in the polymer film, outer parts

appear slightly out of focus, demonstrating the polymer film is not planar, but curved.

This curvature may occur during the peeling process as the outer portion of the

Figure 3.11 A dark-field optical image of grating lines embedded in a polymer film
demonstrating the film curvature.

polymer film is attached to the tape, but not the inner portion. The peeling enlarges

slightly the inner portion. After the polymer film is peeled off from the coupon

surface, the enlarged portion relaxes into a curved film. Local curvatures may not

occur because the polymer film is thin (on the order of a few microns) and possesses
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a stress relaxation property [208] [198]. If local curvatures occur, the curvature radii

of multiple polymer films will not be same. This would produce measurement data

with much larger error bars than those as shown in figure 3.9. Therefore, the polymer

film can be treated as concave and the experimental apparatus as shown in figure 3.5

is approximate to the Wadsworth configuration.
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Chapter 4

Real time monitoring of superparamagnetic

nanoparticle self-assembly on surfaces of

magnetic recording media

The previous chapter discussed the fabrication of all-nanopartice diffraction gratings

using the field directed self-assembly and pattern transfer technology. However, the

diffraction efficiency is lower than theoretically predicted, and a high efficiency diffrac-

tion grating is extremely important for its technological applications [169]. We need

to better understand the nanoparticle self-assembly process to the improve the diffrac-

tion efficiency and the assembly and nanomanufacturing technology. In this chapter,

I present evidence that the nanoparticle self-assembly dynamics can be monitored

in real-time by detecting optical diffraction from the all-nanoparticle grating as it

self-assembles on a grating pattern recorded on a magnetic medium located in a fluid

cell. The nanoparticle self-assembly process can be highly tuned using knobs such as

the particle pH and colloidal stability of nanoparticles [242].

4.1 Experimental

Figure 4.1 (a) shows a schematic of the fluid cell (∼ 25× 15× 0.5 mm3) with a glass

window to provide optical access. To provide better understanding, a photograph of

a real fluid cell is also shown in figure 4.2 (a). The fluid cell is made by milling a

piece of acrylic sheet (a Personal CNC milling machine is used). Six tapped holes are

used to hold a piece of glass slide (∼ 35× 25× 1 mm3) on top of the fluid cell. The
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Figure 4.1 (a) Schematic of the fluid cell. (b) Schematic of magnetic patterns and
transitions. Arrows: magnetization directions. (c) Dark-field optical image of
grating lines. (d) Experimental apparatus and signal detection method. M: mirror.

Figure 4.2 (a) Photograph of a real fluid cell. (b) Photograph of the fluid cell with
a glass slide and top cover.
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edge of the glass slide on both sides is wrapped with two layers of Teflon tape to seal

the fluid cell [figure 4.2 (b)]. A 15 mm diameter longitudinal disk drive medium with

thickness δ is located at the bottom of the cell and has ∼0.5 mm vertical distance

(h) to the glass window bottom [figure 4.1 (d)].

Oppositely magnetized and interchanged pattern (i.e.,“bit”) arrays with a width

(d0) were magnetically recorded on the medium [figure 4.1 (b)]. Ultrahigh field gra-

dients exist above transitions [“T" in figure 4.1 (b)]. Colloidally suspended super-

paramagnetic nanoparticles in the fluid above the medium surface are magnetized

and attracted onto the transitions yielding patterned arrays, i.e, an all-nanoparticle

diffraction grating with grating spacing d0. Figure 4.1 (c) shows a dark-field optical

image of grating lines (along the y axis). These magnetic pattern arrays have a total

area of ∼ 2×2 mm2.

Dilute suspensions of magnetic nanoparticles are injected into the fluid cell by a

syringe pump and the fluid stops flowing immediately after the fluid is pumped into

the whole fluid cell (figure 4.2). An all-nanoparticle grating then self-assembles on the

magnetic medium surface [figure 4.1 (d)]. A HeNe laser (wavelength λ = 632.8nm)

is incident on the grating with a ∼ 5◦ angle (α) to avoid multiple light reflections

between the glass window and disk drive. The diffraction angle β is related to d0 and

λ by the diffraction grating equation [91]

mλ = d0(sinα + sinβ), (4.1)

where m is the diffraction order. The grating spacing d0 is 750 nm, which has been

verified by optical measurements on nanoparticle patterned arrays. A photodetector

(DD), located in the x-z plane, is used to measure the first order diffraction, i.e., m

= 1 and hence β ∼ 49◦. A second photodetector (SD), located in the y-z plane, is

also employed to measure the laser scattering from the cell. The DD (SD) is ∼7 cm

(5cm) away from the laser spot in the particle suspension. The laser beam is chopped

at 2.5kHz and two lock-in amplifiers read the DD and SD outputs respectively with a
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Figure 4.3 Photograph of the real experimental setup for real-time diffraction and
scattering measurements.
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10ms average time. Figure 4.3 shows a photograph of the real experimental apparatus.

The fluid cell is mounted on a rotation stage that is stacked on a xy stage. The

rotation stage, together with a video microscope (0.7 - 4.5x variable magnification)

that monitors cross marks on the medium surface, is used to align grating lines with

the laser beam. The xy stage is to locate the laser spot on the grating area.

4.2 Concentration, pH and Particle Size Dependence

First, we measure the light scattering (figure 4.4) and diffraction (figure 4.5) for

nanoparticle suspensions with different concentrations and pHs. The light intensity

that the DD monitors (Id) includes the scattering from the cell (Is,DD), and the first

order diffraction (Id,DD) from the grating. Is,DD is found to be linear with the scat-

tering intensity that the SD detects (Is,SD) and Is,DD/Is,SD = 1.25 ± 0.08. Therefore,

the diffraction intensity is calculated by subtracting the scattering signal from Id via

Id,DD = Id − 1.25 Is,SD. Note a ∼ 3 µV scattering background from the cell con-

taining no fluid is subtracted in all measurements. Figure 4.4 and 4.5 (a) show the

scattering and first order diffraction as a function of time t up to 10 minutes for 4

particle suspensions (C1, C0.5, C0.25, C0.125) with relative concentrations 1, 0.5,

0.25 and 0.125 respectively. C1 has a 0.002% volume concentration of nanoparticles.

These suspensions are created by diluting stock solutions of a commercial ferrofluid

(Ferrotec, Nashua, NH, EMG-707) with de-ionized (DI) water. The EMG-707 stock

solution contains Fe3O4 nanoparticles with an average size of 13 nm diameter dis-

persed in DI water. The time for the fluid to start flowing over the laser spot is

defined at t = 0. All curves have spikes that occur after 0 s and remain ∼ 3-5 s,

which is caused by the laser scattering from the wave front of flowing fluids [inset1 to

figure 4.4]. After the spike, Is,SD remains constant (figure 4.4) and the average Is,SD

is a linear function of the suspension concentration [inset2 to figure 4.4]. As shown in

figure 4.5 (a), the diffracted intensity increases monotonically with time. At the same
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Figure 4.4 First order scattering vs time for different concentration particle
suspensions. Inset 1: scattering signals showing spikes. Inset 2: scattering intensity
vs particle concentration.

t, larger concentrations produce larger diffracted intensities (doubling concentration

produces almost doubled Id,dD for t > 100s). Laser attenuation measurements on

all suspensions used here show < 10% light attenuation, which can be ignored when

comparing diffraction efficiencies.

Figure 4.5 (b) shows first order diffraction as a function of t for C0.5 at pH =

7, 8, 9, 10 and 11. At the same t, we observe that as the pH value increases, Id,DD

decreases and then increases [inset in figure 4.5 (b)]. In addition, at t = 600s, the

pH7 suspension produces a Id,DD that is ∼ 3 times larger than the pH9 suspension.

Note we do not observe a similar pH dependence for average hydrodynamic diame-
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diffraction at 600s vs pH.
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core size nanoparticles. (b) and (c) SEM images of nanoparticle aggregates
attracted on the magnetic medium that is dipped in the 8 nm and 22 nm particle
suspensions respectively.

ters (dhydro) of these nanoparticles. We determine dhydro of these nanoparticles (i.e,

the Z-average particle diameter) using a commercial dynamic light scattering (DLS)

tool (Malvern, Zetasizer Nano ZS) and obtain hydrodynamic diameters between 95

- 125nm largely independent of pH. In these DLS measurements, correlation func-

tions behaved reasonably and the software analysis converged properly to dhydro that

were largely independent of our suspension pH (in strong contrast to our diffraction

intensity’s dependence on the suspension pH).
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Second, we measure light scattering and diffraction for nanoparticle suspensions

with different core particle sizes and colloidal stabilities. Figure 4.6 (a) shows first

order diffraction as a function of t for equal concentration suspensions with pH 6.0, 8.6

and 10.3, and made from 8 nm and 22 nm diameter nanoparticle species. These two

nanoparticle suspensions are synthesized via thermal decomposition of iron oleate-

oleic acid mixtures and then an oxidation procedure rendering these nanoparticles

hydrophilic [175]. The 8 nm nanoparticles have significantly weaker colloidal stability

as indicated by the larger dhydro (250 nm vs 50 nm for the 22 nm nanoparticles).

Both particles remain colloidally suspended over the timescale of measurements. For

both particle species, pH makes strong impact on the diffracted signal and larger

pHs yield larger diffraction intensities, which is a different behavior from that as

shown in figure 4.5 (b). For the same pH and t > 100s, the 8 nm particles produce

diffraction intensity 10 times larger than the 22 nm particles. Further, the 8 nm

particles display dramatically different time dependence than both the 22 nm particles

and EMG-707 particles. All 22 nm and EMG-707 particles [figure 4.5 and 4.6 (a)]

display similar curve shapes which have negative curvatures [185]. However, 8 nm

particles show “inverted” curve shapes, i.e., their curvatures are positive. Both 22

nm and EMG-707 particles have stronger colloidal stabilities than 8nm particles, as

suggested by smaller dhydro than 8nm particles (≤ 125 nm compared as 250nm for 8nm

particles). This indicates large aggregates of particles with significantly weak colloidal

stabilities yield the inverted curve shape. Figure 4.6 (b) and (c) show representative

scanning electron microscopy (SEM) images of the 8 nm and 22 nm particles that

are coated on the medium surface respectively. A statistical analysis of SEM images

shows nanoparticle aggregates attracted from the 8 nm particle suspensions are more

periodically distributed than those from the 22 nm particles. In addition, the 8 nm

particles show significantly larger aggregates than the 22 nm particles. This further

suggests that particle aggregation affects the time dependence of diffracted intensity.
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While larger aggregates explain the 10 x difference in Id,DD between the two particle

species, since particles scatter light with the intensity proportional to b6 , where b

is the particle diameter [115], it is not clear how the aggregation changes the curve

shape. Likely it is due to the nanoparticle self-assembly process, not the diffraction.

4.3 Initial Theoretical Calculations

Particle transport in a magnetophoretic system (e.g., in the fluid cell) is governed by

various forces including (a) the magnetic force due to all field sources, (b) viscous

drag, (c) inertia, (d) gravity, (e) buoyancy, (f) thermal kinetics, (g) particle/fluid

interactions (perturbations to the flow field), and (h) interparticle effects including

(i) magnetic-dipole interactions, (ii) electric double-layer interactions, and (iii) van

der Walls force [63] [64] [65]. For the nanoparticles used in the fluid cell, magnetic

forces and viscous forces dominate, and all other effects can be ignored. However, it

is instructive to estimate the magnitude of the other forces for this application. The

gravitational (Fg) and buoyant (Fb) forces are respectively calculated as

Fg =
4ρπR3

pg

3 (4.2)

and

Fb =
4ρfπR3

pg

3 . (4.3)

For a 10 nm diameter Fe3O4 particle (Rp = 5 nm) in water (ρ = 5000kg/m3 , ρf =

1000 kg/m3 , and g = 9.8 m/s). Fg = 3×10−5 fN and Fb = 6×10−6 fN are obtained,

which are more than several orders of magnitude smaller than the magnetic force (∼

0.1 - several pN as shown in figure 2.19). The other forces can also be neglected, since

the particle volume concentration is � 1.

Thus the nanoparticle transport is mainly governed by the magnetic (Fm) and

viscous drag force (Fd). Since the fluid does not flow, the drag force can be calculated
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as

Fd = −6πηRpv, (4.4)

using Stoke’s law [8] [133], where v is the particle velocity and η is the viscosity of

the fluid. The magnetic force (Fm) is expressed as

Fm = µ0Vp(Mp · ∇)Ha (4.5)

by inserting m = VpMp in equation (4.5), where Ha is the magnetic field at the

particle center, Vp and Mp are the particle volume and magnetization respectively.

To determine the magnetic force Fm, a linear magnetization model with saturation

is employed to predict Mp, in which Mp is a linear function of the field up to a

saturation value Msp [64] [65]. For a |Mp| < |Msp|,

Mp = χpHin, (4.6)

where µp and χp = µp/µ0 − 1 are permeability and susceptibility of the particle,

and Hin = Ha −Hdemag, where Hdemag = Mp/3 is the self-demagnetization field in

the particle [77] [65]. If the particle is suspended in a magnetically linear fluid of

permeability µf (χf = µf/µ0 − 1) , the magnetic force is [108]

Fm = µfVp
3(χp − χf)(Ha · ∇)Ha

(χp − χf) + 3(χf + 1) . (4.7)

For a water based ferrofluid, |χf | � 1, i.e. µf ≈ µ0, therefore, (4.7) reduces to

Fm = µ0Vp
3(χp − χf)(Ha · ∇)Ha

(χp − χf) + 3 , (4.8)

and it also follows that

Hin = 3
(χp − χf) + 3Ha, (4.9)

and

Mp = 3(χp − χf)
(χp − χf) + 3Ha. (4.10)
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Therefore, for an arbitrary Ha,

Mp = f(Ha)Ha, (4.11)

where

f(Ha) =


(χp−χf )+3
3(χp−χf ) , Ha <

3(χp−χf )
(χp−χf )+3Msp,

Msp/Ha, Ha ≥ 3(χp−χf )
(χp−χf )+3Msp,

(4.12)

and Ha = |Ha|.

The magnetic force can be decomposed into components, i.e.,

Fm(x, z) = Fmx(x, z)x̂+ Fmz(x, z)ẑ, (4.13)

where

Fmx(x, z) = µ0Vpf(Ha)
[
Hax(x, z)

∂Hax(x, z)
∂x

+Haz(x, z)
∂Hax(x, z)

∂z

]
, (4.14)

and

Fmz(x, z) = µ0Vpf(Ha)
[
Hax(x, z)

∂Haz(x, z)
∂x

+Haz(x, z)
∂Haz(x, z)

∂z

]
, (4.15)

where

Ha = Hax(x, z)x̂+Haz(x, z)ẑ. (4.16)

Hax(x, z) andHaz(x, z) above magnetic transitions of a longitudinal magnetic medium

are given by equations (2.42) and (2.43) respectively. Note coordinates are shown in

figure 2.15. Finally, particle trajectories can be calculated using Netwon’s second law,

i.e.,

m
dvx
dt

= Fmx(x, z)− 6πηRpvx, (4.17)

and

m
dvz
dt

= Fmz(x, z)− 6πηRpvz, (4.18)

where m is the particle mass, and

vx = dx

dt
, (4.19)
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vz = dz

dt
. (4.20)

Equations (4.17) and (4.18) constitute a coupled system of first-order ordinary differ-

ential equations that are solved subject to initial conditions for x(0), z(0), vx(0), and

vz(0).

Figure 4.7 shows trajectories of 5 identical nanoparticles (10 nm diameter Fe3O4)

attracted by ultra-high field gradients. These trajectories are obtained by numerically

solving equations (4.17) and (4.18) with the Runge-Kutta method (see Appendix A

for the Mathematica code) [28] [101]. Large black dots denote initial nanoparticle

positions. Particles with positive initial x positions are studied, since the ultra-high

field and gradient are symmetric about the z-axis. Each particle trajectory appears

linear in the xz plane and is directed towards the transition. However, all particles do

not land exactly on the transition (i.e., x = 0). Their final x position on the medium

surface depends on their initial position, and there is a distribution of positions around

the transition.

Immediately after a particle suspension is injected into the fluid cell, particles start

to move toward magnetic transitions. Particles that are attracted onto the medium

surface form patterns and diffract light. The diffracted light intensity depends on the

particle number and how they are patterned. Within a time t, how many particles

reach the magnetic medium surface and where they arrive on the surface depend on

their initial positions and trajectories. As time increases, more particles fill in the

grating lines. To theoretically predict the diffraction efficiency from the assembled

grating as a function of time, Mie scattering theory [153] [22] [97] is employed. Mie

scattering theory describes solutions of Maxwell’s equations for the scattering of elec-

tromagnetic radiation by a sphere, also known as Lorentz-Mie or Lorentz-Mie-Debye

solution. It is named after Gustav Mie who studied this problem first in 1908 [153].

To precisely predict the diffraction intensity from all attracted particles that have

arbitrary positions on transitions with a finite distribution, a generalized multiparticle
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Figure 4.7 Calculated trajectories for 5 identical nanoparticles.

Mie-solution (GMM) [141] [238] [237] is required. The GMM solution describes scat-

tering by ensembles of particles. Here, I present an initial calculation of the diffraction

intensity based on the Lortentz-Mie theory, which assumes coated nanoparticles form

linear chains of spheres along the x axis with the chain node located above the transi-

tion. I first consider the a bisphere system A1 and A2 (located at O and O′ with radii

= R) that are separated by an arbitrary distance d (d ≥ 2R) as shown in figure 4.8.

The wave vector k = 2π/λ of an incident plane wave is contained in the x-z plane

and makes an angle α with the z axis. Both spheres scatter waves in all directions.

Let S1 = S1(kr, θs, φ;α) and S2 = S2(kr′, θ′s, φ′;α) represent the Lorentz-Mie complex

scattering amplitudes of the spheres A1 and A2 at positions (r, θs, φ) and (r′, θ′s, φ′)

respectively, where φ and φ′ are azimuthal angles. According to the Lorentz-Mie
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Figure 4.8 Scattering geometry for the Lorentz-Mie theory.

theory for the noninteracting bisphere, the amplitude of the total scattered electric

field E12 at (r, θs, φ) in the far-field (i.e., kr, kr′ � 1) is [62] [61]

E12 = ieikr

kr S1(kr, θs, φ;α)[1 + eikd(sinα+sinθs)]. (4.21)

Therefore, |E12|2 is proportional to 1+ cos[kd(sinα+sinθs)] and has interference max-

ima when kd(sinα + sinθs) = 2mπ (m is an integer number), which is essentially

equivalent to the diffraction grating equation (4.1), after inserting k = 2π/λ and

θs = β in the equation (4.21).

For a linear chain of N spheres (Aj, j = 1, · · · , N) with dj the distance between

A1 and Aj, using the principle of superposition, the amplitude of the total scattered
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Figure 4.9 Calculated first order diffraction vs time.

electric field Etot in the far-field can be expressed as

Etot = ieikr

kr
S1[1 +

N∑
j=2

eikdj(sinα+sinβ)]. (4.22)

Similarly, |Etot|2 has interference maxima when the distance between any neighboring

spheres is d0 and kd0(sinα + sinβ) = 2mπ. This means the diffraction intensity from

N spheres results from the interference of all scattered waves, ,and can be calculated

using the equation (4.22). For m =1, k(sinα + sinβ) = 2π/d0, which is inserted in
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the equation (4.22), and thus the first order Id for arbitrary djs is given by

Id =
∣∣∣∣ ieikr

kr SA[1 +
N∑
j=2

ei2πdj/d0 ]
∣∣∣∣2. (4.23)

Figure 4.9 shows the first order diffraction intensity calculated using equation

(4.23) for the same particle suspensions that are shown in figure 4.5 (a). Each curve

has an increasing diffraction intensity with time, and larger concentration particle

suspensions produce larger diffraction intensities. In addition, all curves display sim-

ilar curve shapes as those in figure 4.5 (a). However the curve shapes do not match

the experimental curves precisely. Nonetheless, these results demonstrate that the

theoretical calculation captures the essence of the nanoparticle self-assembly process

and light scattering. A more precise calculation using the GMM solution will be

performed in near future.

4.4 Flowing and Non-flowing Fluid Comparison

In the previous section, the fluid of nanoparticle suspensions does not flow during

the nanoparticle self-assembly process. In this section, the impact of a flowing fluid

that makes on the nanoparticle self-assembly process is investigated. Figure 4.10

(a) and (b) show diffracted intensities as function of time for suspensions NP2_C1,

NP2_C0.5, NP2_C0.25, and NP2_C0.125 that flow with 1 mm/s and zero speed

respectively.

Comparison analysis in figure 4.10 (a) and (b) show NP2_C0.5, NP2_C0.25, and

NP2_C0.125 display similar self-assembly dynamics. The rate of diffraction increases

with time are slightly smaller for non-flowing than 1 mm/s flowing. However NP2_C1

appears quite different from other suspensions. For 1 mm/s flow speeds, the diffrac-

tion intensity increases with time and then decreases [figure 4.10 (a)]. This behavior

is not observed in figure 4.10 (b). This demonstrates that flow of the suspension
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Figure 4.10 First order diffraction vs time for four different concentration particle
suspensions NP2_C1, NP2_C0.5, NP2_C0.25, and NP2_C0.125. (a) The fluid
speed is 1 mm/s. (b) The fluid does not flow after the fluid injection. The
fluctuations of diffraction intensity for NP2_C1 is caused by dirt scattering.

84



www.manaraa.com

does affect the nanoparticle self-assembly process, but a large impact occurs only for

relatively large concentration particles.
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Chapter 5

Nanoparticle Self-assembly Process for

destabilized Nanoparticle Suspensions

In this chapter, I present a versatile approach that can enhance self-assembly of

nanoparticles in suspensions onto the magnetic medium surface, based on the exper-

imental apparatus and detection method that are discussed in chapter 4. Here, the

nanoparticle self-assembly process can be changed by adding a trigger, i.e., a small

volume of the phosphate buffer saline (PBS), to a colloidal suspension that contains

anionic nanoparticles, i.e., their surfactants are anionic charges. PBS has a neutral

pH and possesses positive and negative ions such as K+,Na+,HPO−2
4 , and H2PO−4 .

Ions that are added into the nanoparticle suspension decrease the nanoparticle stabil-

ity and the destabilization effect depends on how many ions are mixed. Nanoparticles

that are only slightly destabilized by a small amount of PBS increase the diffraction

efficiency dramatically. The amount of PBS is so small that the destabilized nanopar-

ticles do not aggregate and are still colloidally suspended in the fluid. However, the

grating self-assembly efficiency decreases as more PBS is added.

5.1 Experimental Procedures

5.1.1 Base Nanoparticle Suspension

The base nanoparticle suspension is created using the following steps. A 20 µL stock

solution of EMG-707 ferrofluid (anionic) is added into 5 mL DI water. Immediately

the mixture is shaken for 10 s. Another 5 mL DI water is added into the mixture
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following a 10 s shaking, and this procedure is repeated until 40 mL mixed suspension

is obtained. The base suspension has a 0.001% Fe3O4 volume concentration.

5.1.2 Clean Medium and Fluid Cell

Cotton swabs are used to gently clean the coupon surface and fluid cell by first

spraying Methanol. A power clean is avoided to reduce possibilities of scratching the

medium surface. Then the coupon and fluid cell are blow dried using a Nitrogen

gun. This process is repeated until the medium surface is clean, which is checked by

investigating the diffraction and scattering intensities from the medium surface.

5.1.3 Mix Base Suspension with PBS

A known volume of PBS (e.g. 25, 50 µL) is added into a 2 mL base nanoparticle

suspension. Immediately the fluid is throughly mixed for 10 s using a 2700 RPM

Vortex-Gene touch mixer. Two minutes later, this mixed suspension is injected into

the fluid cell for data collection.

5.1.4 Collect Diffraction and Scattering Data

Start running the data collection program which reads both the scattering and diffrac-

tion intensities. The suspension obtained in the previous section is injected into the

fluid cell with a 125 mL/h flowing speed through a syringe pump. The fluid stops

flowing immediately after the fluid fills the whole cell.

5.1.5 DLS and Zeta Potential Measurements

DLS and Zeta potential measurements are performed on suspensions obtained in

the section 5.1.3. This suspension is loaded into a commercial DLS tool (Malvern,

Zetasizer Nano ZS) for collecting DLS and Zeta potential data.
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5.2 PBS dependent Diffraction and Scattering

Figure 5.1 (a) shows representative first-order diffraction efficiencies as a function of

time for suspensions that are created by mixing a 2 mL base suspension with 0, 25,

50 and 87.5 µL PBS. The nanoparticle self-assembly process is dramatically different

depending on PBS Volume. The 0 µL PBS displays a curve shape with a positive

curvature, which is similar as those observed for C1, C0.5, C0.25, C0.125, and 22nm

nanoparticle suspensions (figure 4.5 and 4.6, chapter 4) [185] [242]. A 25 µL PBS

yields a curve with no curvature, i.e., the diffraction efficiency is almost linear with

respect to time. The diffraction efficiency at 900 s is ∼5x that for no PBS. As the

PBS volume is increased to 50 µL, the curve shape appears inverted, i.e., its curvature

becomes negative. The diffraction efficiency at 900 s is ∼6x that for 0 µL PBS. The

rate of diffraction efficiency is smaller than the 25 µL PBS before ∼340 s, and becomes

larger after ∼340 s. And hence, diffraction efficiencies of the 25 µL and 50 µL PBS

cross each other at ∼ 660 s. A 87.5 µL PBS still further increases the diffraction

efficiency yielding a diffraction efficiency at 900 s ∼10x that for 0 µL PBS. The curve

shape appears similar as the 50 µL PBS.

Figure 5.1 (b) shows representative first-order diffraction efficiencies as a function

of time for suspensions that are created by mixing a 2 mL base suspension with

87.5, 150, 175 and 400 µL PBS. A PBS volume over 87.5 µL does not lead to the

enhancement, but a decreasing diffraction efficiency. A 150 µL PBS produces a curve

shape with zero curvature and the diffraction efficiency at 900 s is smaller than that

for 87.5 µL PBS, i.e., ∼5x compared with 0 µL PBS. A 175 µL PBS reduces to ∼2.5x

0 µL PBS and yields a curve shape with positive curvature, similar to 0 µL PBS. A

400 µL PBS almost does not coat nanoparticles on the medium surface. In summary,

the curvature changes in a sequence of positive, zero, negative, zero, positive, zero, as

the PBS volume is increased. Similarly, the diffraction efficiency at 900 s is enhanced,

reaching a maximum at ∼ 87.5 µL PBS, and then decreases to zero eventually as the
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Figure 5.1 First order diffraction efficiency as a function of time for suspensions
that are created by (a) mixing 2 mL base suspension with 0 µL, 25 µL, 50 µL, and
87.5 µL PBS. (b) mixing 2 mL base suspension with 87.5 µL, 150 µL, 175 µL, and
400 µL PBS. (c) Scattering intensity as a function of time for same suspensions in
(a). (d) Scattering intensity as a function of time for same suspensions in (b).

PBS volume is increased.

Figure 5.1 (c) and (d) show representative scattering intensities as a function of

time for the same suspensions as shown in Figure 5.1 (a) and (b) respectively. The

scattering intensity remains almost constant with time except for 150 µL and 175 µL

PBS. Scattering intensities of both 150 µL and 175 µL suspensions increase with time

gradually. This is probably caused by the gradual decrease of nanoparticle colloidal

stability while the scattering signal is measured. The reduction in the colloidal sta-

bility of nanoparticlces yields larger aggregates of nanoparticles, which produce more

scattered light.
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Circles in figure 5.2 shows the average scattering efficiency (right axis) as a func-

tion of PBS volume. For PBS volumes that are ≤ 125 µL, the average scattering

efficiency largely remains constant. For a PBS volume that ranges between 125 µL

and 250 µL, the average scattering efficiency is almost linear with respect to the

PBS volume, and the average scattering efficiency increases as PBS volume increases.

However, for PBS volumes > 250 µL, the average scattering efficiency decreases as

the PBS volume is increased, while the scattering efficiency also appears largely linear

with respect to the PBS volume. Dots in figure 5.2 show the diffraction efficiency at

900 s (left axis) as a function of the PBS volume. The diffraction efficiency at 900

s is dramatically enhanced as a small volume of PBS is added, reaching a maximum

when the PBS volume = 87.5 µL, and then decreases quickly as the PBS volume is

increased. A 300 µL PBS yields a diffraction efficiency that approximately equals to

the 0 µL PBS. More PBS further reduces the diffraction efficiency. A 500 µL PBS

almost stops the nanoparticle self-assembly on the medium surface.

5.3 DLS and Zeta Potential Measurements for Nanoparticles Desta-

bilized via PBS

To understand why the diffraction and scattering efficiency behave as shown in figure

5.2. PBS dependent hydrodynamic diameters and Zeta potentials of nanoparticles

are determined using experimental procedures discussed in the section 5.1.

Figure 5.3 (a) shows hydrodynamic diameters of suspended nanoparticles (right

axis) as a function of the PBS volume from the DLS intensity (green squares), and

average size distribution (red triangles) measurements respectively. As a comparison,

the scattering efficiency (left axis) obtained from the fluid cell is also shown in figure

5.3 (a). Both Hydrodynamic Diameterintensity and Hydrodynamic DiameterZ−avg dis-

play similar curve shapes as the scattering efficiency, while Hydrodynamic Diameterintensity

matches slightly better. This demonstrates the average scattering intensity measured
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Figure 5.2 Diffraction efficiency at 900 s (left axis) and scattering efficiency (right
axis) as a function of the PBS volume.

from nanoparticle suspensions in the fluid cell is proportional to particle hydrody-

namic diameters. Therefore, average scattering intensity appear to be an indicator

of nanoparticle size as the nanoparticles are suspended in the fluid cell.

Similarly, Figure 5.3 (b) shows Hydrodynamic Diameterintensity and Hydrodynamic DiameterZ−avg

(right axis), and the diffraction efficiency at 900 s (left axis) as a function of the PBS

volume. The diffraction efficiency is strongly enhanced for a PBS volume that ranges

between ∼25 µL and ∼150 µL. But there is little increase in hydrodynamic diameters

of particles over the 0 µLPBS. As the particle hydrodynamic diameter increases caus-

ing by a larger PBS volume than 150 µL, the diffraction efficiency does not increase,

but decreases quickly. This behavior contradicts the intuition that particles with

larger hydrodynamic diameters should better self-assemble on the medium surface

and would scatter light more intensively. Although I do not understand this behavior
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Figure 5.3 Squares in green on the right axis: the hydrodynamic diameter of
nanoparticles as a function of the PBS volume that is mixed with the base
suspension. Squares (triangles) are determined as the DLS intensity (Z-average)
distribution measurement. Circles on the left axis in (a): scattering efficiency vs
PBS volume as measured form the fluid cell. Dots on the left axis in (b): diffraction
efficiency at 900 s vs PBS volume.
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completely yet, this strongly suggests that ultra-high field gradients, together with

the destabilization effect caused by small amount of PBS, yield the strong enhance-

ment in the diffraction efficiency. A dramatic decrease in the diffraction efficiency

at relatively large PBS volumes may be caused by: (i) nanoparticles aggregate into

big particles; (ii) magnetic forces acting on big aggregates are too small to drag the

particles onto the medium surface, since the field and field gradient are localized in

the range of 0 - 200 nm above the medium surface (figure 2.17, 2.18 and 2.19).

Triangles (right axes) as shown in figure 5.4 display the Zeta potential of nanopar-

ticles as a function of the PBS volume. The scattering efficiency and diffraction ef-

ficiency at 900 s are also included in figure 5.4 (a) and (b) (left axes) respectively

as comparisons. The surface of these nanoparticles is coated with anions, and thus

the Zeta potential is negative. Below the amplitude of Zeta potential is discussed.

The base suspension has a 60 mV Zeta potential. A 12.5 µL PBS addition into

the base suspension causes the Zeta potential to be ∼50 mV. More PBS up to 150

µL does not cause the Zeta potential of nanoparticles to decrease dramatically, but

yields a Zeta potential that ranges between 40 and 50 mV. In this range, the Zeta

potential is largely linear with the PBS volume, and decreases as the PBS volume is

increased. The strong enhancement of the diffraction efficiency occurs in this PBS

range [figure 5.4 (b)]. Note that hydrodynamic diameters of these nanoparticles re-

main same as the 0 µL PBS ( figure 5.4). At 250 µL PBS reduces the Zeta potential

from 45 to 30 mV and the hydrodynamic diameter grows from ∼600 nm to 1500 nm

(HydrodynamicDiameterZ−avg in figure 5.3), which is dramatic. This indicates the

decrease in the diffraction efficiency (comparing with the peak) for ≥ 250 µL PBS,

is not mainly caused by weaker colloidal stability, but by large particle aggregates

(> 1500 nm). This demonstrates that ultrahigh field gradients, together with the

destabilization of nanoparticles but without bulk colloid aggregates, can enhance the

diffraction efficiency and drive the change in diffraction curve shapes as shown in
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Figure 5.4 Triangles denotes the Zeta potential vs the PBS volume. Circles on the
left axis in (a): scattering efficiency vs PBS volume as measured form the fluid cell.
Dots on the left axis in (b): diffraction efficiency at 900 s vs PBS volume.
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figure 5.1. Weaker stability of particles that leads to the large aggregates, however,

does not enhance, but reduces the nanoparticle coating quality dramatically.
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Chapter 6

Spin-Transfer Torque

Previous chapters focus on the nanoparticle self-assembly project. Chapter 6 and

7 describe the spin-transfer torque (STT) project. This chapter introduces ferro-

magnetism, giant magnetoresistance (GMR), spin injection and STT, and discusses

experimental work to investigate ultrafast magnetic switching dynamics using ultra-

fast STT pulses.

6.1 Ferromagnetism and Giant Magnetoresistance

6.1.1 Ferromagnetism and two-current model

Magnetism of materials originates from electron spins, while electrical transport is

caused by the motion of electrical charges. Few metallic elements appear ferromag-

netic except 3d transition metals (Fe, Co, Ni), and heavy rare-earth metals (e.g., Gd,

Tb, Dy). In rare-earth ferromagnetic metals, electrons carrying magnetism are 4f .

These 4f electrons are located deep inside the atomic core. Therefore, their magnetic

moments are well localized within the individual atom, and electrons responsible for

electrical transport can be distinguished from the 4f electrons for magnetism [158].

However, this distinction does not exist for 3d transition metals, where the 3d elec-

trons carry magnetism. These 3d electrons are located relatively far from the atomic

core, and thus considered to be itinerant (i.e., moving among atoms). From a quan-

tum mechanical view, these 3d electrons form band structures [34] [24] [20] [158].

The electronic structure of 3d transition metals consists mainly of s- and d-orbitals.
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Figure 6.1 (a) and (b) Schematic density of states (DOS) of Co and Cu
respectively. Arrows indicate majority (up) and minority (down) spin states, in
uniformly magnetized materials. EF : Fermi energy level.

The relative position of Fermi energy level EF to s- and d-states depends on the mate-

rial. Figure 6.1 (a) shows schematic density of states (DOS) of a typical 3d transition

metal Co, where the horizontal axes represent the DOS for majority [spin up: g+(E)]

and minority [spin down: g−(E)] spin states respectively, and the vertical axis de-

notes the energy E. Electronic structures of both Co and Cu consist of wide s-bands

(thin curves in figure 6.1) and narrow d-bands (thick curves in figure 6.1). The d-

band splits for spin up and down states. This yields a larger population of spin up

electrons than that of spin down electrons. Therefore, ferromagnets show macro-

scopically spontaneous magnetization [34] [24] [20] [158]. This collectively preferable

direction of spins is chosen as the quantization axis ẑ (i.e., spin up) in a quantum

mechanical representation, and -ẑ is the spin down direction. While in normal metals

such as Cu, the DOS of s- and d-bands for spin up and down states are equal [figure

6.1 (b)], therefore, normal metals are not ferromagnetic.

The conductance of metals depends on properties of electronic states close to the

Fermi surface. For non-magnetic metals (ignoring spin-orbit coupling), all electronic

states are spin degenerate, therefore, the scattering probability for a particular elec-

tronic state does not depend on its spin state. In ferromagnetic metals, spin-up states
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close to the Fermi surface are very different from spin-down states in not only the

total number of DOS [figure 6.1 (a)] but also their detailed wavefunction structures

[34] [158]. Electrons at different spin states experience different scattering environ-

ments in transport, and ferromagnetic metals appear to be more resistive to one type

of spin state and more conductive to the other [34] [158]. The electrical conductivity

of metals σ is given by the Drude formula [34] [5], i.e.,

σ = e2nτ

m∗
(6.1)

where e, n, τ and m are the electrical charge, carrier density, lifetime and effective

mass of carriers respectively. In ferromagnets, the Drude formula takes into account

the spin dependence in these quantities [158] [248]. Typically n, τ and m are all

spin dependent and τ is most spin dependent because τ is strongly affected by spin

scattering. τ relates to the mean free path l through τ = l/vF , where vF is the Fermi

velocity. Typically l is � the spin diffusion length and spin angular momentum

remains constant approximately over the time scale of τ . Hence, spin up and down

electrons can be considered independently in evaluating the scattering lifetime, i.e.,

1
τ

= 1
τ ↑

+ 1
τ ↓
, (6.2)

where τ ↑, τ ↓ are the lifetime for spin up and down electrons respectively. σ = ∑
s σs,

where s =↑ or ↓. This is called the Mott’s two-current model [160] [248].

6.1.2 GMR

Magnetoresistance (MR) is a resistance change of specific structures when external

magnetic fields are applied. Commonly these specific structures consist of an alter-

nating stack of a few nm thick ferromagnetic (FM) and non-magnetic (NM) layers.

Typically ferromagnetic materials are Co, Fe, Ni, and their alloys and normal ma-

terials are Cr, Cu and Ag. Some multilayers show large magnetoresistances, which
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Figure 6.2 Schematic diagram of GMR effect. (a) and (b) FM/NM/FM
sandwiches with anti-parallel and parallel magnetizations respectively. (c) and (d)
resistance networks for (a) and (b) respectively, according to the two-current model.
FM: ferromagnetic. NM: normal.
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is called giant MR (GMR) for a metallic NM layer and tunnel MR (TMR) for an

insulating NM layer. GMR was first observed in Fe/Cr/Fe multilayers that show

a > 50% change in the MR measured at 4.2 K with current in plane [7] [135] [52]

[18] [79]. Figure 6.2 (a) shows schematic of a FM/NM/FM trilayer with anti-parallel

ferromagnetic magnetizations. Note a dipole field coupling from the two FM layers

(inter-layer exchange coupling) favors the anti-parallel alignment of FM magnetiza-

tions when no external fields are applied. According to Mott’s two-current model

[160], [89], spin up electrons transversing the trilayer, i.e., current perpendicular to

plane (CPP), have a smaller resistance R↑ than that for spin down electrons R↓, i.e.,

R↑ < R↓. This trilayer structure can be treated with a resistance network as shown

in figure 6.2 (c). The total resistance RA is expressed as

RA = R↑ +R↓
2 . (6.3)

Similarly, figure 6.2 (b) displays the sandwich with parallel ferromagnetic magnetiza-

tions, which is treated as a resistance network as shown in figure 6.2 (d). The total

resistance RP is expressed as

RP = 2R↑R↓
R↑ +R↓

. (6.4)

RP < RA, which explains the magnetoresistance change caused by external fields align

the FM magnetizations parallel. In the case that the ferromagnetic magnetizations

are not collinear and make a relative angle θ with each other, the total resistance

R(θ) is approximately given by [121]

R(θ) = RAP +RP

2 − (RAP −RP )cosθ
2 . (6.5)

The magnitude of MR is calculated via the MR ratio as

MR = ρAP − ρP
ρAP

, (6.6)

or

MR = ρAP − ρP
ρP

, (6.7)
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FM NM

Figure 6.3 Schematic diagram showing spin injection across the interface between
the ferromagnet and non-magnetic materials.

where ρAP and ρP are the resistivity in the multilayer with AP and P alignment

respectively. Commonly equation (6.7) is used in the literature [158].

6.2 Spin Injection

An electron carries both charge (−e) and spin angular momentum (~/2). A ferro-

magnet can also be used as a "spin filter". Figure 6.3 shows electrons that are injected

into a ferromagnet flow out of the ferromagnet into a non-magnetic material. Elec-

trons passing through the FM/NM interface gain spin imbalance because electrons

interact with polarized spins in the ferromagnet and maintain the spin imbalance for

a characteristic time (i.e., spin relaxation time) after flowing out the ferromagnet.

This current is called a spin current or a spin-polarized current, which carries not

only charges, but also a net flow of spins. These spin-polarized electrons are subject
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to spin relaxation due to the spin-orbit coupling and diffuse into the non-magnetic

material for a characteristic length (i.e, a spin diffusion length). This induces a local

spin accumulation in the NM [106] [148] [147] [241]. Johnson and Silsbee [106] are the

first to use a ferromagnet to inject spin currents into a NM material and electrically

detect the accumulated spin of electrons by a second ferromagnet a few microns away.

6.3 Spin-transfer torque

Figure 6.4 shows schematic of a nanopillar consisting of a FM/NM/FM/NM multi-

layer (i.e. a spin valve), e.g., Co(10)/Cu(5)/Co(3)/Cu(6). Their thickness in units of

nm are enclosed in parentheses. FM1 and FM2 are called the spin polarizer and free

layer respectively. Since FM1 is thicker than FM2 and a larger energy is required to

switch the FM1 magnetization than that of FM2. The cross section of the nanopillar

is on the order of 100 x 100 nm2. Both the free layer and spin polarizer have single

magnetic domains and the magnetization can be treated as a macrospin. A voltage

is applied across the nanopillar bottom and top. The electric current is first spin

polarized by FM1(i.e., polarizer) and then injected into FM2 (i.e., free layer) through

NM1. The current reaching FM2 remains spin polarized since the NM1 thickness

is much shorter than the spin diffusion length, which is >100 nm for Cu at room

temperature[2, 118]. This spin current exerts a torque on the local magnetic moment

of FM2, and this torque is called a spin-transfer torque. The current has a spin angu-

lar momentum denoted by J1 and J2 in NM1 and NM2 respectively. The exchange

interaction between the spin current and the FM2 magnetic moment conserves the

total spin angular momentum. Therefore, one obtains

dS2

dt = J1 − J2. (6.8)

This means a decrease in the spin angular momentum of spin current equals an

increase in the spin angular momentum of FM2. Assuming electrons passing through
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Figure 6.4 Schematic illustration of Spin-transfer torque.
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FM1 are spin-polarized along S1, i.e., J1 || S1 [both are oriented along (θ, φ) (figure

6.4)], one can express the spin function of J1 as (Appendix B)

J1 =
∣∣∣(θ, φ)

〉
= cos

θ

2
∣∣∣ ↑ 〉+ sin

θ

2e
iφ
∣∣∣ ↓ 〉 or

 cos θ2
sin θ

2e
iφ

 (6.9)

in the Pauli matrix representation, where
∣∣∣ ↑ 〉 are

∣∣∣ ↓ 〉 are the spin eigenstates in the

+z and -z direction respectively. Conduction bands of FM2 are split into two bands

with direction pointing up and down respectively. Therefore, the wave function of

the injected spin current into FM2 has two separated partial waves with different

wave vectors k↑ and k↓. The phase acquired on two partial waves after traveling

through FM2 (thickness d3) is k↑d3 and k↓d3 respectively. Assuming electrons travel

through FM2 with ballistic collision [202] [203] [204], the spin function of spin current

is calculated as

J2 =

eik↑d3 0

0 eik↓d3


 cos θ2

sin θ
2e
iφ

 = eik↑d3

 cos θ2
sin θ

2e
i[φ+(k↓−k↑−)d3]

 . (6.10)

Equation (6.10) shows the phase of S2 has been changed by (k↓−k↑)d3, meaning S2 has

precessed around the z axis by (k↓−k↑)d3 (units: rad). Since films are polycrystalline

and each conduction electron travels along different crystal orientations, the phases

and precession angles should be different for different electrons. As a result, the

transverse components (x- and y-components) of the injected spins cancel each other

[203] [204]. Therefore, in the Cartesian coordinates, the spin current exerts on FM2

a spin-transfer torque that can be expressed as

dS2

dt = g(θ)J
S

−e
~
2




cosφsinθ

sinφsinθ

cosθ

−


0

0

cosθ



 = g(θ)J
S

−e
~
2e2 × e1 × e2, (6.11)

where e1 and e2 are the unit vectors of S1 and S2 respectively. JS is the charge

current and g(θ) represents the STT efficiency that depends on the spin polarization
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(P ) and the relative angle between S1 and S2, i.e., θ. Slonczewski proposed a formula

for the spin-transfer efficiency, g(θ), for CPP-GMR junctions by considering a free

electron model [202] [203] [204]:

g(θ) =
[
−4 + (P−1/2 + P 1/2)3(3 + cosθ)/4

]−1
. (6.12)

6.4 Coherent control of nanomagnet dynamics via ultrafast spin-

transfer torque pulses

This section discusses measurements on ultrafast magnetic dynamics in spin valves

using a pair of ultrashort STT pulses. This project was conducted with my colleague

Samir Garzon. I took most of the data and Samir performed simulations. I greatly

appreciate his work that contributed to make this project move forward.

The magnetization orientation of a nanoscale ferromagnet can be manipulated

using an electric current via the spin transfer effect [202, 203, 13, 12]: spin angular

momentum is transferred from the conduction to the localized electrons, exerting an

effective torque on the ferromagnet [113, 211, 223, 161]. Time domain measurements

of nanopillar devices at low temperatures have directly shown that magnetization

dynamics and reversal occur coherently over a timescale of nanoseconds [128, 35]. By

adjusting the shape of a spin torque waveform over a timescale comparable to the free

precession period, control of the magnetization dynamics in nanopillar devices should

be possible [182, 220, 219]. Here, the coherent control of the free layer magnetization

in nanopillar devices, using a pair of current pulses as narrow as 30 ps with adjustable

amplitudes and delay, is reported. In contrast with previous measurements where

the spin torque is applied throughout a large fraction of a precession cycle [224,

109, 194, 39, 41], in these reported experiments the magnetization evolves freely

except for short time intervals when it is driven by the spin torque. By using ultra-

short spin torque “impulses” a previously unexplored regime, in which nanomagnet

dynamics is strongly affected by the timing of the spin torque pulses with respect
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Figure 6.5 Schematic of experimental apparatus.

to the underlying free precession orbits, can be accessed and investigated. Regions

where the spin torque “impulses” have the largest effect on the dynamics, thereby

increasing the efficiency of nanomagnet switching over longer spin torque pulses, are

experimentally mapped. Furthermore, these experiments demonstrate the ability to

manipulate the free magnetic moment motion, even exciting large angle precession,

and demonstrating room temperature coherent dynamics.

6.4.1 Experimental Setup

Figure 6.5 shows the experimental setup schematically. A femtosecond mode-locked

laser in single-shot mode is used to generate either a single pulse or a pair of optical

pulses with adjustable amplitudes and time delay tD, which are then converted to

electrical pulses using a LT-GaAs/Au photoconductive switch [6, 206]. To produce

the pair of optical pulses with a precise delay, an optical pulse in split into two optical

106



www.manaraa.com

pulses with a beamsplitter BS1. These two optical pulses are combined together with

a second beamsplitter BS2, where their relative time delay is obtained by inserting

a linear stage in the optical path of beam 2. Their amplitudes are controlled by

optical filters F1 and F2 respectively. Optically-generated electrical pulses can be

relatively timed with sub-ps resolution, and since the measurement is independent

of the absolute pulse timing, there are no trigger jitter effects. A 40 GHz bias tee is

used to inject both the current pulses that induce magnetization dynamics and the

ac/dc currents used to measure the resistance and reset the device.

For room temperature measurements, the device is connected with a 40GHz pi-

coprobe. To perform high frequency measurements at low temperature, the device is

Au ribbon bonded to a 40GHz interconnect inside the cryostat as shown in figure 6.6.

Figure 6.6 (a) shows an image of the cryostat that contains a 40 GHz coaxial cable

with both male connectors inside. A thermometer is attached to the cable terminal

to monitor the device temperature. Liquid nitrogen and helium can be transferred

into the cryostat to cool the device via transfer tubes. Figure 6.6 (b) shows the inter-

connect that consists of three parts: Cu ground piece, Hermetic seal solder contact,

and 2.92 mm female threaded connector [inset to figure 6.6 (b)]. The Hermetic seal

solder contact is inserted into the pin hole of the 2.92 mm female connector to join

the male connector of the 40 GHz coaxial cable. The Cu piece has inner threads that

are used to connect the 2.92 mm female connector and provide the ground connec-

tion. The other pin of Hermetic seal solder contact protrudes out of the Cu piece

through the ∼2 mm diameter pin hole on the other end. Devices are silver painted

on the Cu ground piece, and two Au ribbons connect the pin and ground to a device

electrically. Figure 6.6 (c) shows an amplified optical image of the spin valve device

with two Au ribbons bonded onto two electrodes. Figure 6.6 (d) shows an optical

image of the Au bond on the pin of Hermetic seal solder contact. Because Au does

not stick well to materials, special care is required to make Au ribbon bonds. I never
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Figure 6.6 Images showing an experimental apparatus for low temperature and
high frequency measurements. (a) Cryostat. (b) High frequency interconnect where
a spin valve device is Au ribbon bonded on. (c) Image of two Au ribbons that are
bonded on a device. (d) Image of a Au ribbon bonded on top of the pin.

succeeded in making Au ribbon bonds when the device and interconnect were at room

temperature. Raising the temperature of all components to 65 - 75 ◦C helps make

bonds easier. When all components are at an appropriate temperature (e.g., 70 ◦C),

making Au ribbon bonds on device electrodes was successful most of the time. How-

ever making an Au ribbon bond on the pin takes much effort. Major problems are (i)

Au ribbon bonds break easily at the bonding site; (ii) Au ribbon bonds do not stick

well to the pin, primarily because the pin surface is not flat, but in a pyramid shape.

Nonetheless, these problems can be solved by tuning vibration forces and power of

the bonder. There are proper power and force making strong Au ribbons that stick as
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well. Proper parameters were written in the lab notebook kept with the wire bonder.

Bonding order is also an important factor to consider. Since bonding onto the pin is

more difficult, a good bond order should bond onto the pin first, and then the device.

The reverse order could ruin device electrodes during multiple trials.

Reflection measurements show that typical room temperature pulsewidths at the

device are ∼30 ps, but due to cryostat bandwidth limitations the typical pulsewidths

are ∼58 ps at 77 K. This pulse width broadening is mainly caused by the impedance

mismatch between the coaxial cable and the device including the interconnect and

ribbon bonds. However, in devices that are measured the small angle free precession

period τ ∼300 ps (calculated from thin film measurements of saturation magnetiza-

tion MS and the nominal shape anisotropy) is much larger than the current pulse

width τω but comparable to the inter-pulse delay 0 ns < tD < 2 ns.

6.4.2 Measurement Procedures and Data Acquisition

Measurements of the nanomagnet switching probability (PS) for single or pair of

spin-transfer torque pulses is performed as follows. For each switching attempt, (i)

the device is reset to the P state by applying a negative ∼300 ms current step; (ii)

the device state is confirmed by measuring the resistance; (iii) a shaped waveform,

consisting of either one or two current pulses is used to induce nanomagnet dynamics;

and (iv) the final state of the multilayer is probed by measuring its steady state

resistance. For all reported measurements the number of repetitions is chosen to

ensure that the statistical error is smaller than 2%. It is known that at nonzero

temperatures thermal excitations broaden the distribution of orientations of the “free”

layer magnetization ( ~M) around the equilibrium direction. However, reproducibility

in nanomagnet switching can be increased by applying transverse fields [39] or through

inter-layer coupling [128]. Throughout all measurements in-plane transverse fields

H⊥ ∼175 Oe are applied to shift the parallel and anti-parallel fixed points of ~M (blue
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Figure 6.7 (a) Schematic of a type “N” nanopillar device. θ is the polar angle
measured from the nanomagnet easy axis and ϕ is the azimuthal angle measured
from the normal to the nanomagnet plane. A transverse field H⊥ is applied to shift
the red and blue stable points to a non-collinear configuration. (b) Resistance vs
easy axis field for device N2 at room temperature. (c) Resistance vs current for
device N2 at room temperature with H‖=830 Oe and H⊥=175 Oe. (d) PS vs. single
∼30 ps FWHM pulse amplitude for device N1 at room temperature. (e) PS vs.
single ∼58 ps FWHM pulse amplitude for device N2 at 77 K.

and red dot respectively) away from the easy axis [Fig. 6.7(a)] to obtain a nonzero

equilibrium angle between polarizer and free layer (non-collinear geometry).

6.4.3 Results and Discussion

Measurements of the type “N” Co90Fe10(8.7nm)/Cu(3nm)/Co90Fe10(2nm) spin trans-

fer nanopillar devices are discussed. These devices are patterned into ∼150nm×75nm

ellipses as shown in figure 6.7(a). Antiferromagnetic dipolar field coupling between

the thick layer (polarizer) and the “free” layer is canceled by biasing the devices

with an easy axis magnetic field H‖ ∼800 Oe [figure 6.7(b)]. The “free” layer can

be switched between low resistance (parallel, P ) and high resistance (anti-parallel,
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AP ) states via a spin-transfer torque from an applied dc current [figure 6.7(c)] with

polarity defined in figure 6.7(a). Typical values of the four terminal P state resistance

and of the magnetoresistance are 1.3 Ω and 9% respectively. The large resistance val-

ues shown in figure 6.7(b) and (c) are due to lead resistance together with inductive

impedance in the experimental setup. First, a ∼100% PS with single 30 ps pulses at

room temperature is demonstrated. [figure 6.7(d)]. In particular, for devices with dc

switching currents comparable to those previously reported [109, 194], a PS ≈100% is

achieved with pulse amplitudes two times smaller than expected from the assumption

of pulsewidth and amplitude being inversely proportional [124, 138]. These results

are supported by macrospin simulations which indicate that for the non-collinear ge-

ometry the pulsewidth-current product required for PS =95% decreases by more than

a factor of two when τw � τ . The reduction in pulse amplitude occurs because the

effect of spin torque produced by longer pulses over a precession cycle is partially

canceled. Depending on field bias, temperature, and device anisotropy, PS shows

either stepped [39] [figure 6.7(d)] or smooth [194, 109] [figure 6.7(e)], monotonic in-

crease with increasing pulse amplitude. The stepped increase in PS, predicted by

theoretical simulations and previously observed in similar experiments as a function

of pulse width (τω >100 ps) [39], is caused by the underlying free precession orbits.

In order to explore the coherence of nanomagnet evolution, an ultrashort pulse is

used to excite the magnetization dynamics, and a second ultrashort pulse of equal

amplitude at different instants of the free precession orbit is applied. The switching

probability of device N2 as a function of inter-pulse delay at room temperature and

77 K is shown in figure. 6.8(a) and (b). Since incoherent dynamics would lead to

a delay-independent switching probability P2 = 1 − (1 − P1)2 (with P1 the single-

pulse switching probability), measurement data indicates that coherent nanomagnet

dynamics occurs even at room temperature. However, a striking difference between

the slow change in PS at room temperature and the clear oscillations and strong
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Figure 6.8 PS of device N2 at (a) 293 K and (b) 77 K as a function of delay
between two current pulses. (c) Simulated PS vs. delay for two equal amplitude 58
ps FWHM pulses at 77K. Labeled regions correspond to the orbits shown in (e). (d)
Phase portrait of ~M showing the basins of attraction for the two stable points P
(blue) and AP (red, not visible). Initial conditions θ,ϕ within the gray (black) basin
lead to no-switching (switching). (e) ~M trajectories generated by two current pulses
of equal amplitude that have been delayed by 90 ps (i), 190 ps (ii), and 280 ps (iii).
Rectangles enclose regions where a second pulse has high probability of switching
~M .
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modulation present at 77 K is observed . The devices described so far (type “N”),

with dc switching currents ∼0.4 mA, have a small stability factor ∆ = EB/kBT (with

EB the energy barrier between P and AP states), and thus are extremely sensitive to

thermal effects. At room temperature, the probability of thermally assisted switching

increases and the distribution of the initial orientations is much broader. While

thermally-assisted switching only increases the baseline of PS, the broadening of the

distribution of initial orientations decreases the reproducibility of the trajectories at

each repetition of the experiment, partially averaging out the delay dependence. This

averaging explains why at room temperature type “N” devices typically show decay

in PS with increasing delay, and only small amplitude PS oscillations.

To clearly demonstrate room temperature coherent control, similar measurements

on type “E” devices, which have switching currents ∼2 mA and higher thermal sta-

bility, are performed. These devices (type “E”) have an extended bottom layer, and

are comprised of [Ni80Fe20(20nm)/ Co90Fe10(2nm)]/Cu(10nm)/Co90Fe10(3nm), where

the extended bottom layer [NiFe/CoFe] decreases the magnetic layer dipolar coupling.

Typical traces of PS as a function of delay are shown in figure 6.9(a) and (b) at room

temperature and 77 K. Clear, large amplitude oscillations in PS can be seen even at

room temperature for up to 1 ns. Fourier analysis of the oscillations of device E1

(with nominal dimensions 150×75 nm) at 77 K shows a fundamental period of 120 ps

(ω=8.3GHz) and a much smaller 2ω harmonic. Since the precession period is twice

the period of the PS oscillations, τ ≈240 ps for device E1. Similarly, for device E2

with nominal dimensions 160×100 nm, τ ≈330 ps. The precession periods obtained in

this way are consistent with estimations based on thin film measurements of MS and

demagnetization coefficients of ellipsoidal nanomagents with the dimensions given

above. At room temperature the switching probability of device E2 can be tuned

between 4% and 93% by only adjusting the delay between pulses. The enhancement

in the switching probability from 60% at zero delay (single pulse) to ∼94% at 120

113



www.manaraa.com

0 200 400 600 800 1000 1200

Delay HpsL

0

0.2

0.4

0.6

0.8

1

Ps

0 200 400 600 800 1000 1200

Delay HpsL

0

0.2

0.4

0.6

0.8

1

Ps

(a)

(b)

devE1 at 77K

devE2 at 293K

Figure 6.9 PS vs. delay for extended bottom layer devices (a) E2 at room
temperature, and (b) E1 at 77 K.

ps delay [figure 6.9(a)] has been measured while keeping the amplitude of the pulses

constant. However, if the total energy delivered by the pulses is kept constant, a more

dramatic enhancement in PS from 10% to 70% at intermediate pulse amplitudes and

from 40% to 95% at larger pulse amplitudes is observed. Therefore, multiple current

pulses timed with the underlying coherent dynamics require less total energy than a

single pulse to reproducibly switch spin transfer devices.

Increased control over the magnetization trajectory can be obtained by adjust-

ing not only the pulses’ timing but also their amplitude. We measure the switching

probability as a function of the amplitude of a pair of pulses while keeping the delay

(185 ps) and relative amplitude (I1/I2 = 1) constant [figure 6.10(a)]. PS initially
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Figure 6.10 (a) PS vs. pulse pair amplitude at 185 ps delay and 77 K for device
N2. (b) Simulated PS for situation described in (a) using the same parameters as
figure 6.8(b). (c) ~M trajectories at labeled regions of (b) corresponding to pulse
amplitudes of 4.8 mA (I), 6.8 mA (II), and 15 mA (III). Initial conditions are
chosen randomly with a thermal probability distribution.

increases with increasing pulse amplitude, but after 15 mA it decreases from 80% to

55% before finally increasing to ∼100% at 23 mA. This counterintuitive result that

increasing the spin torque leads to a decrease in the switching probability is fully con-

sistent with coherent precession and is predicted by our simulations [figure 6.10(b)].

This agreement shows once more that in our system the macro-spin model captures

the essence of nanomagnet dynamics. Typical magnetization trajectories at the three

labeled regions of figure 6.10(b) are shown in figure 6.10(c). As the amplitude of the

pair of pulses is increased from region I to region II [figure 6.10(b)], the state of ~M

at the end of the second pulse moves from the black basin to a higher energy gray

basin region, therefore decreasing PS [figure 6.10(c)]. As the amplitude of the pulses

is increased further to region III in figure 6.10(b), the first pulse produces enough spin

torque to switch ~M [figure 6.10(c)]. These results suggest that by applying multiple

short current pulses with controlled amplitudes and delays, the magnetization can be
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deliberately moved into larger angle, higher energy orbits.

6.4.4 Simulations

To understand the origin of the oscillations, which are clearly observed at 77 K, theo-

retical simulations are performed to model the time evolution of the magnetization of

a single domain nanomagnet driven by a perpendicular spin current [figure 6.7(a)] by

using a modified Landau-Lifshitz-Gilbert equation which includes the Slonckzewski

spin torque term with g(θ)= const [203, 212]. Simulations assume that the magneti-

zation of the polarizer is fixed, and consider the effect of nonzero temperatures only

on the distribution of initial orientations of ~M (via a Monte Carlo method) but not

on the evolution of ~M , which is assumed to be completely deterministic. As shown

in figure 6.7(a), ~M is described by θ, the polar angle measured from the nanomagnet

easy axis, and ϕ, the azimuthal angle measured from the normal to the nanomagnet

plane [212]. ~M has fixed points at ϕ = π/2 and θ = arcsinH⊥/Hk with Hk the easy

axis anisotropy field. The phase portrait of ~M in the absence of spin torque is shown

in figure 6.8(d)[10]. The black and gray regions, which are the basins of attraction

for the red and blue minimum energy points, are wrapped around each other, em-

phasizing the final state’s large sensitivity to fluctuations in the initial orientation of
~M (i.e. thermal effects).

Simulations of the delay dependence of PS for a pair of pulses with equal amplitude

at 77 K [figure 6.8(c)] show oscillations with delay that agree qualitatively with our

observations [figure 6.8(b)]. Typical trajectories at consecutive maxima and minima

of PS, regions labeled i, ii, and iii, in figure 6.8(c) are shown in figure 6.8(e), where

the section 3π/8 < ϕ < 5π/8 of the phase portrait shown in figure 6.8(d) has been

stretched into a plane. The initial condition and first pulse (in yellow) are equivalent

for all trajectories, but the second pulse (also in yellow) is applied at different times

(tD =90 ps, 190 ps, and 280 ps). The free evolution between the two pulses is shown
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in white. There are two regions (dashed boxes in figure 6.8(e) where the second

spin torque pulse can more effectively induce basin boundary crossing and lead to

magnetization reversal. As indicated by trajectory ii, a second pulse applied outside

of the marked regions can even push ~M closer to the blue fixed point, reducing

the effect from the first pulse. These simulations illustrate how in the non-collinear

geometry, when a pulse with a width larger than the free precession period is used

for nanomagnet switching, partial cancellation of the effect of spin torque occurs,

decreasing the switching probability.
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Chapter 7

Extended Work on Ultrafast nanomagnet

dynamics

In the previous chapter, I discussed coherent control of nanomagnet dynamics using

∼30 ps spin-transfer torque pulses. In this chapter, I present measurements to study

magnetic dynamics while the damping is canceled by adding another 5 ns duration

pulse that is precisely timed with the two 30 ps STT pulses. A pair of oppositely

polarized 30 ps STT pulses with a relative time delay are also generated to investigate

the magnetic dynamics. Finally I describe research work that attempts to study

nanomagnet demagnetization by combining picosecond STT pulses with femtosecond

optical pulses.

7.1 Time-domain sampling measurements of nanomagnet damping can-

cellation via spin-transfer torque

Spin-polarized electrons passing through a nanomagnet (nanoscale ferromagnet) ex-

ert a spin-transfer torque (STT) [202, 13] on the local magnetization. In contrast to

external field torques, STT can be largely collinear with the Landau Lifshiftz Gilbert

damping torque [179], allowing control over damping [128, 189], in addition to driv-

ing precession and switching [223, 113]. Spin torque’s ability to coherently cancel the

damping torque holds great potential for applications of nanopillars in high stabil-

ity, low-linewidth microwave oscillators [114]. Whereas for ac driven oscillators the

linewidth depends directly on damping, linewidths of dc driven oscillators are domi-
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nated by trajectory dephasing [190, 189]. Measuring and understanding the effects of

damping and dephasing is critical for minimizing oscillator linewidths and maximizing

their power output [95]. At low temperatures, time-domain [128] and ferromagnetic

resonance (FMR) measurements [189] of spin-valve nanopillars have demonstrated

spin torque induced damping reduction. Here, the damping cancellation at room

temperature by using a pulsed time domain technique is demonstrated: two ultrafast

(30 ps) spin torque impulses excite nanomagnet dynamics and the switching proba-

bility PS is measured as a function of relative pulse-pulse delay [66]. A comparison in

damping cancellation using a 5 ns current pulse and a dc current is made. While both

approaches reduce the damping, the trajectory dephasing and thermal switching that

occur with dc currents, prevent observing the damping over the full range of spin

torque amplitudes where damping cancellation occurs. However, the 5 ns pulse, at

amplitudes well above the “dc” critical current, can cancel the effective damping and

yield coherent dynamics over a maximum time window of 2.2 ns.

7.1.1 Experimental

Spin-valve nanopillar devices with elliptical cross section are fabricated using e-beam

lithography and ion milling. The devices are composed of an extended Ni80Fe20(20

nm)/Co90Fe10(2 nm) polarizer which provides a large magnetic moment to improve its

stability, a 10 nm Cu spacer, and a 3 nm Co90Fe10 “free” layer or nanomagnet [Inset

to Fig. 7.1(c)]. A typical plot of resistance vs. field is shown in Fig. 7.1(a), where the

large vertical arrows indicate free layer switching between P and AP states (largely

parallel or anti-parallel to the polarizer). The small dashed and solid arrows represent

the orientation of the free layer, m, and polarizer, mp, respectively. The measured

Stoner-Wohlfarth astroid for devices indicates that the polarizer follows the applied

field, reversing orientation around zero field [small dips in resistance in Fig. 7.1(a)].

Polarizer reversals near zero field, along with considerable interlayer dipole coupling,
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Figure 7.1 Device characterization and experimental setup. (a) Resistance
vs easy-axis magnetic field, H‖, for a typical device at room temperature. (b)
Schematic describing the orientation of the polarizer mp and P, AP stable points.
mp tracks the applied field, H. (c) Resistance vs. dc current for device shown in (a)
with H=46 kA/m and Ψ ∼12 degrees. Inset: device schematic. (d) Experimental
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at a pick-off tee before the device.
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are responsible for the two symmetric loops at positive and negative fields. For all

STT measurements an in-plane magnetic field H at a small angle Ψ ∼10 degrees with

respect to the easy axis e‖ [Fig. 7.1(b)] is applied to cancel the polarizer’s dipolar field,

facilitate AP-P current induced switching, and set the orientation of the polarizer to

obtain a non-collinear geometry, increasing switching reproducibility [66]. For the

values of H used throughout all experiments the orientations of points P and AP are

displaced less than 3 degrees from e‖ due to the easy axis anisotropy of the free layer.

Current, defined as positive when flowing across the multilayer from top to bottom

[inset to Fig. 7.1(c)] can be used to switch the nanomagnet via STT [179]. A typical

resistance vs dc current loop [Fig. 7.1(c)] shows sharp transitions between the P and

AP states and a ∼8 mA wide region of bistability. Four terminal measurements of

the P state resistance and magnetoresistance give typical values ∼1.6 Ω and ∼7%

respectively. The large two terminal resistance values in Figs. 7.1(a), (c) are due to

lead resistance and inductive impedance of the bias tees shown in Fig. 7.1(d).

To generate ultrafast spin torque current pulses an amplified Ti:Sapphire mode-

locked laser (120fs FWHM,∼1.6mJ per pulse) in single-shot mode is used [Fig. 7.1(d)]

. An optical pulse is split into two separate pulses at the first beamsplitter (BS1),

with each pulse having independently controlled amplitudes via tunable optical filters

(F1, F2). A sub ps resolution variable optical delay tD between the pulses is produced

with a translation stage, after which the beams are recombined at BS2 and focused

onto a Au photoconductive switch (PCS) [6]. The two PCS generated electrical

pulses (14.9 mA, ∼ 30 ps FWHM) are sent through a 40 GHz coplanar-to-coaxial

probe (P1) to the PCS bias tee (BT1) with 12 ps risetime and 40V dc switch bias. A

power combiner (PC) can add a 25ps risetime, 5 ns duration pulse to the pulse pair,

and the resulting signal is then transmitted to the nanomagnet through a 40GHz

network which includes a pick-off tee (PT) for pulse monitoring [Fig. 7.1(d)] and a

second 40 GHz bias tee (BT2) for injecting dc and low frequency ac currents for
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device switching and lock-in amplifier measurement of nanopillar resistance. Device

connection is made with a second 40GHz coaxial-to-coplanar probe (P2). For each

measurement, the device is reset to the AP state by using a low frequency current

ramp, verify the state of the device by measuring its resistance, send a pair of ultrafast

pulses together with either a 5ns duration pulse or a dc current, and measure the final

state of the device: P or AP.

7.1.2 Results and Discussions

As explained in Ref. [66], the first ultrafast pulse displaces m away from AP. After a

controlled time delay the second ultrafast pulse displaces m once again. By varying

the delay the switching efficiency of spin torque at different average orientations of

m is measured. Hundreds of switching events for each delay are measured to keep

the statistical error below 2%. The bandwidth of the technique, currently 40 GHz,

depends on the pulse duration and can be extended to over 0.8 THz [162, 226].

Coherent oscillations of PS with delay are shown in Fig. 7.2(a). Here the oscillating

peaks in PS, always <40%, decrease dramatically after 0.6 ns and disappear before 1

ns.

DC currents together with two ultrafast pulses are applied to decrease the nano-

magnet damping via STT [128, 189]. For 0.6 mA dc current [Fig. 7.2(b)], an addi-

tional peak at tD=1.1 ns is observed , while the existing peak amplitudes (at 0.6,

0.78, and 0.94 ns) increase, suggesting that the dc STT indeed reduces the damping.

As for zero dc current, here PS decreases to 0% between successive peaks, meaning

that the dc current alone does not cause switching. For 1.6 mA dc currents, just

below the “dc switching current” of 1.8 mA [Fig. 7.2(c)], PS no longer goes to zero

at the minima, and although the earlier peak amplitudes again increase, the peaks at

0.94 and 1.1 ns show little to no increase relative to the background. As 1.6 mA is

close to the dc switching current, i.e. PS=100% without ultrafast pulses, the current
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Figure 7.2 dc current effective damping reduction (a)-(c) PS vs delay
between two ∼30 ps duration pulses for dc currents of (a) 0 mA, (b) 0.6 mA, and
(c) 1.6 mA at room temperature. The “dc switching current”, measured using a
sweep rate of 0.05 mA/s is ∼1.8mA. (d)-(e) Sections of the free layer moment phase
portrait for the dotted region of Fig. 7.1(b) with a dc current. A m ensemble long
after applying a dc current and the same ensemble just after applying the first
ultrafast pulse are respectively shown in yellow and blue. In (d) Idc=1.1 mA, while
in (e) Idc=1.2 mA.

cannot be further increased to observe complete elimination of damping. Macrospin

simulations shown in Fig. 7.2(d), (e) suggest that long after applying a dc current,

the m ensemble is uniformly distributed along a stable precessional orbit (yellow),

i.e. the individual trajectories are no longer phase coherent with respect to the ar-

rival of the first ultrafast pulse. For small currents the first ultrafast pulse broadens

and shifts the dephased m ensemble away from AP [blue dots in Fig. 7.2(d)]. Since

the ensemble is far from the switching boundary, the second pulse does not always

lead to switching and PS goes to zero at certain delays. For dc currents below the
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instability threshold the same behavior is observed. However, for large currents, the

first pulse broadens the m distribution pushing part of the ensemble near (and even

across) the switching boundary [blue dots in Fig. 7.2(e)], and thus the second pulse

always leads to nonzero switching probability. In addition, for large dc currents the

ensemble is more symmetrically distributed around AP, rather than shifted in a par-

ticular direction [compare blue dots in Figs. 7.2(d), (e)], and thus the modulation of

PS with delay will decrease. Therefore trajectory dephasing with dc currents restricts

the observation of damping reduction using a time-resolved sampling technique.

To demonstrate coherent damping cancellation and reduce the impact of trajectory

dephasing, the dc current is replaced with a 25 ps risetime, 5 ns duration current

pulse. The 25 ps risetime allows us to precisely time the first ultrafast pulse with the

beginning of the 5 ns pulse throughout all measurements (see inset above Fig. 7.1(d)).

As shown in Figs. 7.3(a)-(b), PS is now measured vs. delay for different 5 ns pulse

amplitudes, I5ns. In both cases, I5ns is greater than the “dc” switching current, and

in sharp contrast with Figs. 7.2(b)-(c), Figs. 7.3(a)-(b) show near constant amplitude

PS oscillations persisting out to the maximum delay, tD=2.2 ns. Note in Figs. 7.3(a)-

(b), when the 5 ns pulse is used for damping cancellation, as for the 1.6 mA dc bias

case, there is a nonzero PS background. However, for I5ns = 2.16 mA, well above

the “dc” switching current, the value of the PS background is comparable to IDC =

1.6 mA, but the amplitude of the peak at 1.1 ns has increased to 25%, compared

with < 10 % for IDC = 1.6 mA. Moreover, in this case, PS=0% when only the 5 ns

pulse is applied. These differences illustrate how the dephasing intrinsic to the dc

measurements reduces the visibility of PS modulation with delay.

For the 5 ns pulse data, three distinct PS regimes as a function of time are iden-

tified: (i) below 0.6 ns, the PS maxima are irregular and increase with increasing

delay, (ii) between 0.6-1 ns the PS oscillations monotonically decrease with increasing

delay, and (iii) above 1 ns the oscillation amplitude is almost constant and shows a
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minimal decrease at longer tD. As shown in Fig. 7.3(c), for short delays the m en-

semble resulting from the second pulse is displaced to the second gray non-switching

region (blue/dashed line). As tD increases, the section of the ensemble within the first

white switching band gets larger and thus PS increases (regime i). As tD increases

further [Fig. 7.3(d)], the m ensemble resulting from the second pulse is not pushed

as far away from AP, and the m ensemble lies between the inner gray and first white

band. In this case, PS decreases monotonically since for larger delays the ensemble

has a smaller part in the white switching band (regime ii). Once m reaches its stable

orbit at 1.2 mA, the PS modulation amplitude is almost constant, with further decay

caused by “dephasing” similar to that seen with dc currents (regime iii). These simu-

lations suggest experimental data are consistent with complete damping cancellation

over a range of currents.

The analysis ignores thermal effects on the magnetic moment motion. Thermal

fluctuations will introduce a stochastic component into the magnetization trajectories,

broadening the m distribution further [25]. This broadening can also contribute to the

existence of a nonzero PS background, and for long delays it will produce additional

dephasing of the trajectories and eventually a disappearance of the PS oscillations.

7.2 Asymmetric delay dependence in ultrafast nanomagnet dynamics

excited by oppositely polarized picosecond spin torque impulses

Spin-polarized electrons passing through a nanomagnet (nanoscale ferromagnet) ex-

ert a spin-transfer torque (STT) [202, 13] on the local magnetization, driving the

nanomagnet magnetic precession and switching [223, 113]. This offers a promising

writing scheme for high frequency spin torque oscillators and nonvolatile magnetic

random access memory (MRAM) devices. Nanosecond STT pulses have been ap-

plied to study the nanomagnet switching [2, 40, 111], and two 30 ps STT pulses with

equal amplitudes and same polarities can be used to coherently control the mag-
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Figure 7.3 5 ns pulse effective damping reduction (a)-(b) PS vs delay for 5ns
duration pulse amplitudes of (a) 2.16 mA and (b) 2.71 mA. (c), (d) Sections of the
free layer moment phase portrait for the dotted region of Fig. 7.1(b), in the presence
of a 1.2 mA 5ns duration pulsed current. Yellow dots represent the m ensemble just
before the second ultrafast pulse for (c) tD=140ps and (d) tD=580 ps. The solid
dark line represents a stable orbit at 1.2mA while the blue (dashed) regions
schematically represent regimes (i) and (ii) described in the text.

netic dynamics where the switching dynamics is symmetric with respect to interpulse

delay [66]. However, by using two oppositely polarized 30 ps STT impulses, the

nanomagnet switching dynamics exhibiting asymmetric delay dependence are exper-

imentally demonstrated.

7.2.1 Experimental

Three batches of spin-valve nanopillar devices with nominal elliptical cross sections

150×75nm, 125×75nm and 160×100nm were fabricated using e-beam lithography
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Figure 7.4 Device characterization. (a) Resistance vs easy-axis magnetic field,
H. (b) Resistance vs dc current with H‖=65 mT and Ψ ∼8 degrees. Inset:device
schematic. (c) PS vs single pulse amplitude current for the device in the same
configuration shown in (b). Stars (squares) are for negative (positive) pulses. Solid
lines are the fit of the data with a Fermi function. Inset: schematic describing the
orientation of the polarizer mp and P (blue dot), AP (red dot) stable points. θ is
the angle that m makes with e‖. mp tracks the applied field, H.

and ion milling. All devices are composed of an extended Ni80Fe20 (20 nm)/Co90Fe10

(2 nm) polarizer which provides a large magnetic moment to improve its stability, a 10

nm Cu spacer, and a 2 nm Co90Fe10 “free” layer or nanomagnet [Inset to Fig. 7.4(b)].

A typical plot of the device resistance vs field is shown in Fig. 7.4(a), where the

vertical arrows indicate the free layer switching between P and AP states (largely

parallel or anti-parallel to the polarizer). The small red and blue arrows represent the

orientation of the free layer, m, and polarizer, mp, respectively [Inset to Fig. 7.4(c)].
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The measured Stoner-Wohlfarth astroid for devices indicates that the polarizer follows

the applied field, reversing orientation around zero field [small dips in resistance in

Fig. 7.4(a)]. Polarizer reversal near zero field, along with considerable interlayer

dipole coupling, are responsible for the two symmetric loops at positive and negative

fields. For all STT measurements we apply an in-plane magnetic field H‖ [Fig. 7.4(a)]

at a small angle Ψ ∼8 degrees with respect to the easy axis e‖[Inset to Fig. 7.4(c)]

to cancel the polarizer’s dipolar field, facilitate AP-P current induced switching, and

set the orientation of the polarizer to obtain a non-collinear geometry, increasing

switching reproducibility [66]. For the values of H‖ used throughout all experiments

the orientations of points P and AP are displaced less than 5 degrees from e‖ due

to the easy axis anisotropy HK of the free layer. Current, defined as positive when

electrons flow across the multilayer from bottom to top [inset to Fig. 7.4(b)], can be

used to switch the nanomagnet via STT [179]. A typical resistance vs dc current

loop [Fig. 7.4(b)] shows sharp transitions between the P and AP states and a ∼6

mA wide region of bistability. Four terminal measurements of the P state resistance

and magnetoresistance give typical values ∼1.85Ω and ∼13% respectively. The large

two terminal resistance values in Figs. 7.4(a) and (b) are due to lead resistance and

inductive impedance of the measurement setup.

Laser pulses [120fs full width at half maximum (FWHM)] in single-shot mode are

focused onto two Au photoconductive switches [6] to generate two oppositely polar-

ized ∼26 ps current pulses. A sub ps resolution variable optical delay tD between the

pulses is produced with a translation stage. The ultrafast electrical pulses are trans-

mitted to the nanomagnet through a 40GHz network. Pulse reflection measurements

show the pulse width through the nanomagnet is ≤30 ps. For each measurement the

device is reset to the AP/P state by using 100ns duration pulses, verify the state of

the device by measuring its resistance, wait 100ms, send ultrafast pulses and measure

the final state: P or AP. In experiments at least one thousand switching events for
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each switching probability (PS) are measured to keep the statistical error below 1.5%.

All measurements are performed at room temperature and all data shown here are

from the representative device with 125×75nm cross section. Measurements on other

devices show similar behavior qualitatively.

7.2.2 Results and Discussion

First single pulse PS with respect to pulse amplitudes is measured. Positive pulses

attempt to switch m from AP to P states (AP-to-P) [Fig. 7.4(b)], and PS increases

monotonically with the pulse amplitude (IPeak) as IPeak is increased over the ampli-

tude threshold of ∼11.4mA. PS reaches ∼100% at ∼30mA [squares in Fig. 7.4(c)].

P-to-AP switching via single negative pulses is analogous [stars in Fig. 7.4(c)]. How-

ever the amplitude threshold for negative pulses is larger than that for positive pulses,

since the angular dependence of STT on θ [inset to Fig. 7.4(c)] is not symmetric with

respect to the device hard-axis [202]. For both pulse polarities, the data fit better

with a Fermi function [solid lines in Fig. 7.4(c)] than a simple exponential function.

A STT waveform consisting of a pair of the oppositely polarized 30 ps pulses (p1

and p2 in the inset to Fig. 7.5) is employed to measure PS as a function of interpulse

delay tD. In the discussion below I focus on AP-to-P transitions, keep p1 (IPeak=-

15.1mA) at tD=0ps, and scan p2 (IPeak=17mA). For tD <0 (i.e., p2 arrives before

p1), PS increases monotonically with |tD| from |tD1|=∼80ps to |tD2|=∼260ps and

then remains constant at 50%, the single p2 PS alone [stars in Fig. 7.5]. This occurs

because p2 attempts to switch m to P, while the subsequent p1 endeavors to drive m

back towards AP, and the eventual m state is determined by the magnetic evolution

excited by both pulses. Longer relative delay means the less probability that p1

kicks m back to AP. This is supported by macrospin simulations using the modified

Landau-Lifshitz-Gilbert equation including a Slonczewski spin torque term. In the

simulation I consider the effect of 300K temperature on the distribution of initial
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Figure 7.5 Asymmetric delay dependence in PS. The device is in the same
configuration shown in Fig. 7.4(b). Squares (stars) denote PS vs tD for tD ≥ 0 (<0)
excited by a pulse pair consisting of two oppositely polarized 30 ps pulses, i.e., p1
and p2, as shown in the bottom inset. Red solid line represents the fit. The squares
for tD ≥ 900ps are joined plotted with the blue dashed line on purpose of guide to
eye. Two black dashed lines display envelopes of fit PS peaks and dips respectively.
Top inset: triangles denote the time difference of consecutive peaks vs tD.

orientations via a Monte Carlo method and the evolution of m through stochastic

fields. The stochastic field is assumed to obey the Gaussian process, i.e., each spatial

component of the stochastic field has a zero mean Gaussian distribution and strength

of fluctuations that equals
√

2αkBT/[(1 + α2)γMSV dt], where kB is the Boltzmann’s

constant, T=300K, V is the nanomagnet volume and dt is the numerical evolution

time step. As shown in Fig. 7.6(a), the black solid line displays the simulated θ

evolution of single trajectory in the presence of only p2 starting from 0ps ending up

with switching. However if p1 is applied at tD=120ps (red dashed line) when m has

not evolved beyond the device hard-axis (i.e., θ=π
2 ), p1 drives m back to AP (red

solid line). Similarly if p1 arrives at tD=400ps (blue dashed line) when θ is < π
2 ,

p1 enlarges θ, but is not able to pull m back to AP, and thus a switching event

occurs (blue solid line). Depending on the initial condition of m, HK , temperature
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Figure 7.6 Macrospin simulation results. (a) Simulated θ vs delay for p2
arrives before p1 (tD < 0). The black line denotes θ for single p2 and red (blue) line
for the pulse pair with |tD| =120ps (400ps). (b) Triangles denote the simulated PS
vs tD and the solid line represents the fit.

and field bias, in the case of single-p2 switching events, possibilities for p1 to pull m

back to AP even p1 arrives at a moment when θ is < π
2 are also observed.

However there is a quite different switching behavior for tD > 0 (i.e., p1 arrives

before p2) [squares in Fig. 7.5]. PS oscillates with decay and strong PS modulation

(0-100%) is present. This is counterintuitive at the first sight, since p1 drives m

towards AP which should not enhance p2 switching. But the analysis shows p1

displaces m away from AP equilibrium, since AP is ∼ 13 degrees off from mp in the

non-collinear geometry [inset to Fig. 7.4(c)]. Then the free precession of m around

the AP equilibrium is excited. As explained in ref. [66], p2 delivers STT at different

instants over the free precessional orbits and the resulting STT efficiency is increased

or reduced depending on the timing of p2. And thus decaying oscillations of PS map

the underlying free precessional orbits excited by p1.
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Simulations of the delay dependence of PS for tD > 0 display oscillations with

decay that agree qualitatively with observations. A typical plot of simulated PS vs

tD is shown by triangles in Fig. 7.6(b). Simulations also suggest the data can be fit

with the phenomenological equation below

PS(tD) = P0 + PAsin[ω0(tD − t0)]e
−(tD−t0)

τ (7.1)

where P0 is PS for applying single p2 alone, and PA, ω, t0, and τ are fitting pa-

rameters, representing the effect of m free precession, angular frequency of PS os-

cillations, time offset and the magnetic relaxation time. As shown in in Fig. 7.5,

the red solid line displays the fit with τ =830ps and 7.46GHz, the fundamental fre-

quency of PS oscillations. The two black dashed lines represent the envelopes of fit

PS peaks and dips, which match the decay of PS well. Macrospin simulations show

two regions in the phase portrait of m where p2 has high probability of switching

m (see Fig.2 in ref. [66]). The fundamental precessional frequency of m is deduced

as 3.73GHz (half 7.46GHz). This is consistent with the ferromagnetic resonance

frequency (fFMR =3.78GHz) of the device calculated using the demagnetization co-

efficients of ellipsoidal nanomagnets with the dimensions (125×75×2nm) and the sat-

uration magnetization MS=1.26T, measured with the perpendicular Magneto-optic

Kerr effect (MOKE) on 2nm thick Co90Fe10 films. Further analysis of simulations

reveals that τ = 2/(αγµ0MS) [123] still holds, where γ and µ0 is the gyromagnetic

ratio and the magnetic permeability of the free space respectively. And thus the

device damping parameter α is estimated as 0.011.

In addition, as shown in Fig. 7.5, the data demonstrates the coherent magnetic

dynamics up to 0.9ns at 293K. However for tD > 0.9ns, PS shifts gradually from the

fit as indicated by the blue dashed line, which does not mean the magnetic dynamics

lose coherence completely. The top inset plots the time difference between the con-

secutive peaks (∆) with respect to tD. ∆ keeps almost constant (∼134ps) for tD <
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0.9ns, then increases to 155ps and eventually decreases to ∼135ps. Possible reasons

that cause PS shift are: (i) The ultrafast p1 increases the device temperature by

∼13K based on the estimation of Joule heating effect [49]. Joule heating causes a

small reduction of MS within 30 ps, the subsequent cooling makes MS increase back

to MS of ambient temperature. This process leads to a blueshift of the frequency (if

not negligible) during the free precession, since HK and the frequency are propor-

tional to MS and
√
HK(HK +MS) respectively. Therefore, Joule heating is not the

reason for causing the shift of PS oscillations. (ii) I hypothesize PS shift is caused

by the frequency change due to possible α variations during the free precession as

represented by the Eq. (9) in ref. [213]. The maximum ∼155ps ∆ corresponds to α

= 0.106, where fFMR =3.78GHz is used. This large value of the damping parameter

is not reasonable [60] and this possibility is ruled out. (iii) Thermal effects attempt

to randomize m trajectories during the evolution. However macrospin simulations re-

veal thermal effects cause indistinguishable or negligible PS shifts. As demonstrated

in Fig. 7.6(b), the triangles match the fit using Eq. 7.1 well without showing dis-

tinguishable PS shifts. More simulations with different device parameters show the

similar results. So thermal effects do not play a major role in causing PS shift. (iiii)

This PS shift may be caused by a process in which a large angle precessional orbit is

excited and the orbit changes the shape gradually during the free precession.

7.3 Combine picosecond ultrafast SST pulses with femtosecond op-

tical pulses

This project was proposed to investigate fundamental physics of ultrafast demagne-

tization in ferromagnets that is caused by a femtosecond optical excitation. Since

Beaupaire et al. [11] discovered the ultrafast demagnetization of 22 nm Ni films ex-

cited by 60 fs optical pulses in 1996, ultrafast demagnetization dynamics has received

a great deal of attention and has been demonstrated to occur on 100 fs timescale
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[28]. Although ultrafast demagnetization has been studied intensely over the past

decades, fundamental questions still remain unanswered. For example, an ultrafast

relaxation process is believed to occur through the direct transfer of the spin angular

momentum to the lattice. However, the mechanism is still being debated. There is

an intense discussion about whether demagnetization can be explained by phonon-

mediated spin-flip scattering [125] or by superdiffusive transport of hot electrons [9].

To date, a microscopic description of the physics is still lacking.

Commonly this 100 fs demagnetization timescale is measured using a magneto-

optical pump-probe technique. Time-resolved X-Ray absorption spectroscopy, X-

Ray magnetic circular dichroism and time-resolved two-photon photoemission have

also been employed to study the demagnetization process. To date, there is no ultra-

fast measurement which specifically probes the conduction electrons that carry spin

currents through ferromagnets and generate magnetotransport. In addition, most of

these previous studies are performed on sheet films or at best patterned films larger

than 500 nm in diameter. Given the fact that all probes to date have been optical,

a measurement of the conduction electron spins causing magnetotransport in nano-

magnets at these timescales could offer an alternative methodology to uncover the

physics behind the demagnetization process. Ultrafast spin transfer can provide this

sort of measurement.

7.3.1 Description of Proposed Research

In order to integrate these previously disconnected sub-fields of magnetodynam-

ics: optically driven ultrafast demagnetization with transport-driven spin momntum

transfer, I proposed a nanodevice structure, known as a nonlocal spin valve [241].

This nonlocal spin valve device is integrated with a photoconductive switch through

a waveguide. Picosecond electrical pulses can be generated via the photoconductive

switch and transmitted through the waveguide to the nonlocal spin valve device with-
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out broadening their pulse width. Figure 7.7 (a) and (b) show schematically the side

and top view of this device respectively. The polarizer (injector) and the free layer

(nanomagnet with an elliptical cross section) of the device are laterally spaced, where

the Cu spacer is displaced horizontally over a spin diffusion length (∼ 500 - 1000 nm

depending on the temperature) between the injector and nanomagnet. A spin current

is generated after the current passes through the injector, and remains spin polarized

at the nanomagnet. This spin current is confined and thus only transverses through

the nanomangnet as the nanomagnet’s side is insulated. The spin current interacts

with the nanomagnet magnetization and the magnetoresistance of this nonlocal spin

valve depends not only on the relative magnetization orientations of the injector and

nanomagnet, but also the amplitude of the nanomagnet magnetization. A thin ITO

layer on top of the nanomagnet provides both electrical and optical access to the

nanomagnet because a thin ITO layer is not only electrically continuous and but

also transparent to visible light . Therefore, femtosecond pulses can be focused onto

the nanomagnet and excite nanomagnet demagnetization. By precisely timing the

picosecond pulse with the femtosecond optical pulse, the nanomagnet demagnetiza-

tion process can be investigated by measuring the magnetoresistance as a function of

the relative time delay between the two pulses. This nonlocal spin valve geometry,

instead of a typical spin valve, is proposed to eliminate the heating/demagnetization

effect on the injector and Cu spacer from optical pulses. A larger Cu spacer results

in smaller optical heating on the injector and long spin diffusion lengths of the Cu

spacer can be obtained by cooling the device to low temperatures. The heating on

the Cu spacer can be reduced by covering the spacer with SiO2.

7.3.2 Initial Results

To make progress in achieving the ultimate goal, this experimental research project

is divided into several sub-experiments and some initial results are obtained.
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Fabrication of Nonlocal Spin Valve

First is the fabrication of a common nonlocal spin valve device, i.e., the nanomagnet

as shown in figure 7.7 is replaced by a thin ferromagnetic layer. This is an easy step to

verify the fabrication process. Figure 7.8 shows an SEM image of a common nonlocal

spin valve. Two∼ 300 nm wide ferromagnets (Co1 and Co2), laterally displaced∼ 500

nm (center-to-center), are patterned with an electron-beam lithography process and

sputtered following a lift-off process. A second electron-beam lithography procedure

creates patterns of the Cu spacer (∼ 200nm wide) and electrodes (Cu Pad 1 - 6).

SiO

2SiO

2

(b)

Injector
ITO(a)

Side View

Spin Diffusion Length

Nanomagnet

ITO

Top View

Figure 7.7 Schematic of a nonlocal spin valve device with optical access. (a) Side
view. (b) Top view.
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The device was ion milled for 30 s in a chamber with a 1 × 10−8 Torr base pressure

(COPRA Plasma source, CCR technology, Germany) before evaporating Cu. Then

the device is transferred to a second, attached chamber, to avoid breaking vacuum.

Finally, a second lift-off process is performed. AC currents between 10 to 20 µA

are injected from Pad 1 to Pad 4. A nonlocal voltage between Pad 2 and Pad 3

is measured using lock-in amplifiers at 11 Hz and 300 K [67] [241]. Other pads are

also fabricated to verify electrical connections and contact resistances between Co/Cu

junctions. In the steady state an electrical current driven across a Co/Cu junction

will lead to a spin accumulation, which is the balance between spins added by the spin

current and spins removed by spin relaxation [67] [241]. Spin accumulation in the Cu

spacer can act as a source of spin electromotive force which produces a voltage that

Figure 7.8 SEM image of a common nonlocal spin valve device.
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is measurable by adding a second ferromagnet Co 2 [106] [200]. Figure 7.9 shows the

nonlocal resistance (Rnonlocal) as a function of magnetic field applied along with the

ferromagnets (Co 1 and Co 2). The negative value of Rnonlocal is a result of the lock-in

phase. The characteristic switching of Rnonlocal is caused by one ferromagnet reversing

the magnetization and causing the relative orientations of the two ferromagnets to

be parallel or antiparallel [67] [241]. The Rnonlocal difference (∆Rnonlocal) between the

parallel and antiparallel configuration is ∼0.03 mΩ, which is comparable to previously

reported values measured with similar devices [102] [103] [119] [120]. However this

∆Rnonlocal is an order of magnitude smaller than Yang et al. reported [241], which is

caused by the interface quality between the Co/Cu interface.
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Figure 7.9 Nonlocal Resistance as a function of magnetic field that is applied
parallel to ferromagnets.
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Optical Microscope Built

Second, an experimental apparatus is required to focus femtosecond optical pulses and

locate the focus laser spot onto the nanomagnet precisely, assuming a nanodevice as

shown in figure 7.7 has been fabricated. This apparatus consists of a home-made

Figure 7.10 (a) Image of an experimental apparatus that is employed to view
nonlocal spin valve devices and focus femtosecond optical pulses. (b) Schematic of
(a), illustrating how (a) works. Inset: an optical image of a focus laser spot. (c)
Image of a nonlocal spin valve device that is measured with laser reflectivity. Inset:
SEM image of the device.

optical microscope that is equipped with beamsplitters (BS1 and BS2) to provide

optical access. Figure 7.10 (a) shows a real image of the apparatus that I designed

and built. Figure 7.10 (b) displays the schematic of figure 7.10 (a) for illustration. A

100XMitutoyo infinity-corrected long working distance objective (numerical aperture:
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NA = 0.9) is employed to optically image devices and focus femtosecond laser pulses

[125 fs full width at half maximum (FWHM) with a Gaussian beam]. BS 1 and BS

2 are stacked together and BS 1 is mounted on top of the Mitutoyo lens. Devices

are placed on a piezo tube located directly under the Mitutoyo lens. The piezo tube

is mounted on a xyz translation stage that provides coarse motion of the devices.

Parallel white light is reflected by BS 2, passes BS 1 and into the Mitutoyo lens. The

white light reflection from devices passes through BS 1 and BS 2 and is eventually

focused onto a CCD camera by another lens. After appropriately positioning the
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Figure 7.11 Reflectivity as a function of the knife-edge position. Solid (dotted)
curve is the measurement data (fit).

device relative to the Mitutoyo lens, i.e., the nanomagnet is in the CCD view, the

femtosecond laser beam is aligned with the Mitutoyo lens. An image of the focus
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laser spot displays on the CCD camera as shown in inset to figure 7.10 (b). The size

of the focus laser spot on devices can be precisely measured using this apparatus.

The parallel white light source is replaced with a photodetector that detects the laser

intensity reflection from the device. The laser spot size is determined by measuring

the laser reflectivity via scanning a knife-edge transversely across the laser beam

along the orthogonal direction to the edge, which is called a knife-edge method [75].

A sharp edge of device patterns can be treated as a knife-edge (quasi-knife-edge).

The reflectivity of a Gaussian beam from the knife-edge is expressed as [75]

I(x) = I0

2 erf
[(x− x0)√

2ø

]
, (7.2)

where ø, and x0 are the focus laser spot diameter and knife-edge position when

the laser spot centers on the knife-edge respectively. I0 represents the reflectivity

difference between the laser spot on and off the knife, and erf(z) is the Gaussian error

function defined as [75]

erf(z) = 2√
π

∫ z

0
e−t2dt. (7.3)

A minimum focus spot can be obtained by translating the z stage or moving the z

position of the piezo tube.

The solid curve in figure 7.11 shows the laser reflectivity of a focus spot (a 800

nm Gaussian beam) as a function of a quasi-knife-edge position, i.e., a Cu rectangle

pattern, where the transverse motion (i.e. in the xy plane) of the quasi-knife-edge is

driven by a piezo tube. The data is fitted with equation (7.2) (dotted curve in figure

7.11) obtaining a 1.1 µm diameter laser spot. A 1.1 µm ø is smallest, which can be

achieved with the Mitutoyo lens for the 800 nm laser. However, a laser with smaller

wavelength (λ) can be employed to shrink the focus spot, since the minimum ø is

determined by the Rayleigh criterion [199], i.e.,

ø = 1.22λ
2NA , (7.4)
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where λ is the laser wavelength. Equation (7.4) predicts a 1.084 µm ø for 800 nm

laser focused by the Mitutoyo lens, which is close to measured, demonstrating this

home-made microscope is novel. A 632 nm ø, as measured with a quasi-knife-edge, is

obtained for the 400 nm laser beam, i.e., the second harmonic generation of the 800

nm laser. This 632 nm ø is a little larger than predicted, which is probably caused

by that the 400 nm beam is not well collimated.

After the laser beam is focused on the device, the reflectivity of the focusing spot

can be employed to image the device, since patterns of the device act as quasi-knife-

edges. Figure 7.10 (c) shows a reflectivity image of a nonlocal spin valve device (inset

presents its SEM image) by scanning the device transversely across the laser beam.

Therefore, the focus laser spot can be precisely located on the nanomagnet.

On-chip Picosecond Electrical Pulses

Third, an electrical pulse shorter than 30 ps is required to obtain a better resolution

for experimental measurements that combine the picosecond and femtosecond pulse

together. Verghese et al. have made two low-temperature-grown GaAs photoconduc-

tive switches that are embedded in a coplanar waveguide [226]. Electrical pulses with

1.2 ps pulse width was generated by illuminating one photoconductive switch with 80

fs optical pulses. I have fabricated the similar device, which produces 4 ps electrical

pulses. These pulses have a larger width than Verghese et al. made, which may be

caused by longer optical pulses illuminating the photoconductive switch (125 fs, as

determined by a photo autocorrelation [53] [126] setup I built, as opposed to 80 fs

that Verghese et al. used). Ultrashort optical pulses with 25 fs width are available in

our laboratory to generate electrical pulses as short as 1 ps.
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Figure 7.12 Nanopillar fabrication process.
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Nanomagnet Fabrication

Fourth is the fabrication of the nanomagnet (figure 7.7). The critical part in the fab-

rication process is to insulate the nanomagnet side leaving the nanomagnet top open.

I made some effort in the nanofabrication, where a spin valve (i.e., a FM/NM/FM

sandwich) was chosen to mimic the nanomagnet in the device as the GMR of the

spin valve indicates the device quality. The fabrication process is briefly described

below. Figure 7.12 (a) shows a 20 nm thick Cu layer that is patterned with optical

lithography/lift-off on the wafer. This device is coated with Poly(methyl methacry-

late) (PMMA) and a nanohole with an elliptical cross-section (150 × 100 nm2) is

then created in the PMMA by electron-beam lithography. A 30 s ion milling is used

to remove the polymer residue that remains in the nanohole and a multilayer of Co(8

nm)/Cu(7 nm)/Co(2 nm)/Pt(50 nm) are evaporated. A lift-off process leaves a mul-

tilayer nanopillar on top of the bottom Cu layer as shown in figure 7.12 (b). Figure

7.12 (f) and (g) show SEM images of a representative nanopillar in the top and side

view respectively. A 120 nm thick Hydrogen silsesquioxane (HSQ) (Appendix C),

a negative e-beam resist, is spin-coated. HSQ is a flowable, inorganic polymer pos-

sessing an effective planarization capacity. The HSQ layer is planarized on the wafer
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Figure 7.13 MR as a function of applied magnetic field for spin valve devices: (a)
device 1 and (b) device 2.
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after the spin-coating. A high-dose (∼ 2000 µC/cm2 for Dr. Webb’s Zeiss Ultraplus

SEM) e-beam exposure converts the HSQ into SiO2, yielding a 120 nm thick SiO2

[figure 7.12 (c)]. An ion milling (Ar) makes the nanopillar exposed out of the SiO2

keeping the nanopillar side insulated [figure 7.12 (d)]. Finally an optical lithography

is used to pattern the top contact electrode of the spin valve.

Figure 7.13 shows the MR as a function of magnetic field applied along the free

layer easy-axis for two spin valve devices that are fabricated as discussed above.

The device resistance is obtained with two-terminal measurements. The GMR for

both devices is ∼0.03 Ω, which is only 30% of spin valve devices that have similar

materials and dimensions in the literature [66] [121]. This indicates partial current

leaks into the electrodes directly, which may be because materials fall down during

the multilayer evaporation. Figure 7.12 (e) shows a schematic of the PMMA resist

with the nanohole exposed by electron beams. This nanohole has an undercut that

is generated by scattered electrons. As the evaporation beam of multilayer materials

is not perfectly collimated, materials of the next evaporated layer fall down on sides

and mix with the previous layer. This leads to the current leakage. However, this

problem can be solved by ion milling a multilayer that has a hard mask (e.g., a Cr

nanopillar) on top [3].
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Chapter 8

Conclusions and Suggestions for Future

Experiments

This dissertation describes a course of experimental research which has attempted

to add depth of knowledge to two existing fields of study, i.e., nanoparticle self-

assembly and spin-transfer torque. For the point of view of physics, this study has

broken new ground in several ways. First, it has helped establish a novel and low-cost

nanomanufacturing technology that employes ultra-high field gradients to assemble

nanoparticles into complex optical materials. Second, it has performed a first-ever

measurement of the nanoparticle self-assembly process using optical diffraction from

an all-nanoparticle grating as assembled. This measurement technique is sensitive

to colloidal stability of nanoparticles, and thus has a strong potential to be a com-

plementary metrology to DLS measurements. Third, this thesis contains a first-ever

discussion and measurement on reliable manipulation of nanomagnet dynamics by

employing spin-transfer torque pulses as short as 30 ps.

8.1 Nanoparticle Self-assembly

This thesis demonstrates the nanomanufacturing of an all-nanoparticle diffraction

grating that is embedded in a flexible, curved, polymer thin film and its performance

in a calibrated optical spectrograph (chapter 3). Appropriate entrance slits could be

incorporated to improve spectral resolution, larger gratings could be illuminated, and

Rowland circle mounts could be used to reduce aberrations in the diffracted spectrum
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[163]. This approach to programmable self-assembly is not limited in terms of how

large the line-spacing can be, since larger magnetic patterns can easily be recorded.

The minimum line spacing depends on the smallest magnetic pattern that the record-

ing system can support, which is 10 - 30 nm for areal densities from 100 Gbit/in2 - 1

Tbit/in2, and will continue to be reduced as magnetic recording technology advances.

In principle, grating size is limited by mechanical positioning and the availability of

sufficiently large magnetic media materials, however the size and quality of the grating

transferred will depend on the polymer properties, and limits to the peeling process.

Here different polymers with suitable properties could be employed to potentially cre-

ate large-scale gratings. Different magnetic media could be used to increase grating

thickness, and importantly, different species of nanoparticles with more uniformity

and narrow polydispersity could allow better control of groove microstructure, and

potentially allow one to create blazed gratings. Future work will include determining

how grating efficiency, resolving power, and repeatability depend on parameters of

the coating process (e.g. coating time) and nanoparticle magnetic properties. Quan-

titative measurements of grating scatter and stray light emission will help elucidate

the factors that impact absolute efficiency. By combining the unique attributes of

nanomaterials with large area reprogrammable patterning, this approach could yield

more cost-effective and sustainable materials for optical applications.

This thesis has provided and discussed a novel measurement technique to monitor

nanoparticle self-assembly. These measurement results show that diffraction inten-

sity from an all-nanoparticle grating strongly depends on suspension concentration,

pH and particle size. Optical diffraction measurements also demonstrate a dramatic

change in the diffraction intensity as a result of suspension pH that light scattering

does not display. Further, the diffracted signal not only has high sensitivity to particle

aggregation, but also detects different time dependence that depends on the colloidal

stability of particles. Further, these measurements demonstrate a small volume of
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PBS can be used to control the diffraction efficiency and nanoparticle self-assembly

process. In addition, this measurement technique appears to be more sensitive to

colloidal stability of nanoparticles than the common DLS technique. This is a sig-

nificant since this technique can offer a complementary metrology or alternative for

DLS measurements.

Although I have created an initial theoretical model to interpret the growth of

optical diffraction from the assembled grating, a more complex model by including

the generalized multiparticle Mie solution is required to better understanding these

experimental results. The initial model also requires to be enhanced for explaining

the time dependence on the pH and colloidal stability of particle suspensions. In

particular, an effort needs to be made in understanding the curvature and optical

diffraction dependence on the PBS volume. In addition, a solution or model is ur-

gently needed to interpret why the strong enhancement in optical diffraction occurs

only for a small range of the PBS volume, while larger PBS volume does not increase,

but decrease the diffraction efficiency dramatically.

Further, using a dipole effective model [63] [64] to describe the nanoparticle mag-

netization under these ultra-high field gradients remains questionable. The magnetic

field in the whole particle volume is not constant due to the large gradients at the

disk’s surface, therefore, magnetization of the particle may not be uniform. A more

accurate model describing how the nanoparticle is magnetized by magnetic fields with

ultra-high gradients is needed.

Figuring out why PBS can tune the optical diffraction efficiency will be the major

work after my graduation. However, at this stage, more suggestions can be pro-

posed to improve the PTNM technology and further understand the fundamental

physics/magnetism in these patterned nanoparticles. For example, (i) different shapes

of magnetic patterns consisting only of nanoparticles can be created to manipulate

biological cells [245] [222]. (ii) Magnetic particles that are coated with different sur-
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factants, e.g., long chains of polymers that provide steric repulsions, can be used

to study the particle interaction under these ultra-high field gradients. Understand-

ing how these surfactants interact is critical for utilizing these particles in biological

applications such as cell targeted drug delivery [155] [73]. (iii) Magnetic core/Au

shell nanoparticles can be employed to enhance the diffraction efficiency and study

real-time magnetophoresis of individual nanoparticles under ultra-high field gradients

[139]. (iv) Magnetic properties of these nanomanufactured gratings can be studied

via diffraction Magneto-optical Kerr Effect (MOKE) (D-MOKE) [78] [193], together

with reflection/transmission MOKE and VSM techniques. D-MOKE is supposed to

produce a better signal-to-noise [78] than MOKE. Most recently, Dr. Crawford and I

have demonstrated that the magnetic properties of these nanomanufactured gratings

can be measured magneto-optically.

In addition, magnetic field gradients above transitions on perpendicular magnetic

media have also been used to self-assemble nanoparticles. However, a calculation to

predict magnetic fields and field gradients above these transitions is needed. Field

gradients above transitions on both longitudinal and perpendicular magnetic media

could be measured by magnetic force microscopy.

8.2 Spin-transfer torque

This dissertation has demonstrated single ∼30 ps pulses switch non-collinear con-

figuration spin valve devices (chapter 6). Furthermore, a pair of short pulses with

appropriately adjusted amplitudes and relative timing can: (i) increase the switching

probability over its single pulse value while requiring less energy, and (ii) excite the

magnetization into large angle precession orbits. However, the distribution of initial

orientations of the free layer magnetization M around its equilibrium direction limits

both the switching efficiency and the probability of exciting large angle orbits. Since

this distribution depends on the temperature and the energy landscape around the
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magnetization equilibrium point, increased switching efficiency and ∼100% probabil-

ity of exciting large angle precession require lower temperatures and higher stability

of the energy minimum (which also lead to a higher precession frequency). As these

conditions are satisfied, sharper modulation of PS with pulse amplitude or delay will

be observed. To achieve complete control over the magnetization (i.e. to set M into

any desired orbit) requires not only a tight distribution of initial orientations of M

but also multiple ultra-short pulses with precisely adjusted amplitudes and delays.

Experimental measurements also demonstrate coherence at room temperature and

77 K for up to 1 ns. Even though the decaying oscillations in the switching probability

completely disappear above 1 ns, this does not imply lack of coherence, as the decay

arises mostly due to damping. Further measurements can help distinguish between

damping and the long time dephasing of trajectories corresponding to different rep-

etitions of the experiment. Pulsed magnetization control can also be used to study

the switching process in a variety of systems, including magnetic tunnel junctions,

where a quiet “incubation” period that precedes magnetization switching has been

observed [41]. Even though the required ultra-short pulses are not presently available

in on-chip sources, our technique suggests an alternative, more efficient mechanism

for resonantly pumping microwave oscillators [181, 110], and ultimately, for reversing

magnetic memory bits in nanoscale magnetic random access memory (MRAM).

The time domain detection of damping modification in a nanomagnet at room

temperature is demonstrated, and in contrast to dc currents, a damping cancellation

over a broad range of currents with a precisely-timed 5 ns pulse is achieved. These

measurements suggest the possibility to further study thermal dephasing effects in

oscillators, both while relaxing towards stable precession, and for times much longer

than the precession period. Using time-resolved measurements with two oppositely

polarized 30 ps STT impulses, the nanomagnet ultrafast dynamics show asymmetric

delay dependence. PS shows monotonic behavior or oscillations with decay, depending
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on order of the two pulses. Macrospin simulations are performed to understand the

dynamics and the simulation results show the essence of nanomagnet dynamics is

captured. A phenomenological equation is proposed to explain the data of oscillations

and decay, and this equation is strongly supported by macrospin simulations.

To date, the ultrafast demagnetization phenomenon is still not well understood.

To continue working on the demagnetization project, nanodevices are still required

to be fabricated first. A fabrication process using reference [3] is strongly suggested.

After that, these devices should be integrated with low temperature grown GaAs

conductive switches.
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Appendix A

Mathematica Code for Calculating

Nanoparticle Trajectories and Diffracted

Intensities

path = “draft_manuscript/”;path = “draft_manuscript/”;path = “draft_manuscript/”;

Longitudinal Media (Page 46) : tail - tail

Mr = 450103; (*A/m*)Mr = 450103; (*A/m*)Mr = 450103; (*A/m*)

a = 10; (* Transition parameter in nm*)a = 10; (* Transition parameter in nm*)a = 10; (* Transition parameter in nm*)

δ = 30; (*media thickness in nm*)δ = 30; (*media thickness in nm*)δ = 30; (*media thickness in nm*)

(*x : downtrack, zperpendicular, z = 0meansthecenterofdiskthickness*)(*x : downtrack, zperpendicular, z = 0meansthecenterofdiskthickness*)(*x : downtrack, zperpendicular, z = 0meansthecenterofdiskthickness*)

Hx[x_, z_] = −Mr
π

(ArcTan[x, a+ z + δ/2]− ArcTan[x, a+ z − δ/2]);Hx[x_, z_] = −Mr
π

(ArcTan[x, a+ z + δ/2]− ArcTan[x, a+ z − δ/2]);Hx[x_, z_] = −Mr
π

(ArcTan[x, a+ z + δ/2]− ArcTan[x, a+ z − δ/2]);

Hz[x_, z_] = Mr
2π Log

[
(a+z−δ/2)2+x2

(a+z+δ/2)2+x2

]
;Hz[x_, z_] = Mr

2π Log
[

(a+z−δ/2)2+x2

(a+z+δ/2)2+x2

]
;Hz[x_, z_] = Mr

2π Log
[

(a+z−δ/2)2+x2

(a+z+δ/2)2+x2

]
;

HGxx[x_, z_] = D[Hx[x, z], x];HGxx[x_, z_] = D[Hx[x, z], x];HGxx[x_, z_] = D[Hx[x, z], x];

HGxz[x_, z_] = D[Hx[x, z], z];HGxz[x_, z_] = D[Hx[x, z], z];HGxz[x_, z_] = D[Hx[x, z], z];

HGzx[x_, z_] = D[Hz[x, z], x];HGzx[x_, z_] = D[Hz[x, z], x];HGzx[x_, z_] = D[Hz[x, z], x];

HGzz[x_, z_] = D[Hz[x, z], z];HGzz[x_, z_] = D[Hz[x, z], z];HGzz[x_, z_] = D[Hz[x, z], z];

ff[Ha_,Msp_]:=If[Ha < Msp/3, 3,Msp/Ha];ff[Ha_,Msp_]:=If[Ha < Msp/3, 3,Msp/Ha];ff[Ha_,Msp_]:=If[Ha < Msp/3, 3,Msp/Ha];

Vp[Rp_]:=Rp3 × 4× Pi/3; (*Rp in nm*)Vp[Rp_]:=Rp3 × 4× Pi/3; (*Rp in nm*)Vp[Rp_]:=Rp3 × 4× Pi/3; (*Rp in nm*)

Fmx[x_, z_,Rp_,Msp_]:=µ0Vp[Rp]ff [Sqrt [Hx[x, z]2 + Hz[x, z]2] ,Msp]Fmx[x_, z_,Rp_,Msp_]:=µ0Vp[Rp]ff [Sqrt [Hx[x, z]2 + Hz[x, z]2] ,Msp]Fmx[x_, z_,Rp_,Msp_]:=µ0Vp[Rp]ff [Sqrt [Hx[x, z]2 + Hz[x, z]2] ,Msp]
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(Hx[x, z]HGxx[x, z] + Hz[x, z]HGxz[x, z]); (*Furlani_JAP_2006eqn15;(Hx[x, z]HGxx[x, z] + Hz[x, z]HGxz[x, z]); (*Furlani_JAP_2006eqn15;(Hx[x, z]HGxx[x, z] + Hz[x, z]HGxz[x, z]); (*Furlani_JAP_2006eqn15;

Forceunitsarecancelledwithmassm*)Forceunitsarecancelledwithmassm*)Forceunitsarecancelledwithmassm*)

Fmz[x_, z_,Rp_,Msp_]:=µ0Vp[Rp]ff [Sqrt [Hx[x, z]2 + Hz[x, z]2] ,Msp]Fmz[x_, z_,Rp_,Msp_]:=µ0Vp[Rp]ff [Sqrt [Hx[x, z]2 + Hz[x, z]2] ,Msp]Fmz[x_, z_,Rp_,Msp_]:=µ0Vp[Rp]ff [Sqrt [Hx[x, z]2 + Hz[x, z]2] ,Msp]

(Hx[x, z]HGzx[x, z] + Hz[x, z]HGzz[x, z]); (*Furlani_JAP_2006eqn15;(Hx[x, z]HGzx[x, z] + Hz[x, z]HGzz[x, z]); (*Furlani_JAP_2006eqn15;(Hx[x, z]HGzx[x, z] + Hz[x, z]HGzz[x, z]); (*Furlani_JAP_2006eqn15;

Forceunitsarecancelledwithmassm*)Forceunitsarecancelledwithmassm*)Forceunitsarecancelledwithmassm*)

Magnetic forces and drag force

k = 1.38 10−23;k = 1.38 10−23;k = 1.38 10−23;

ε = 1000;ε = 1000;ε = 1000;

T = 300;T = 300;T = 300;

µ0 = 4× Pi× 10−7;µ0 = 4× Pi× 10−7;µ0 = 4× Pi× 10−7;

Msp = 0.56/µ0; (*inA/m*)Msp = 0.56/µ0; (*inA/m*)Msp = 0.56/µ0; (*inA/m*)

R1 = 5; (*nm*)R1 = 5; (*nm*)R1 = 5; (*nm*)

R2 = 50; (*nm*)R2 = 50; (*nm*)R2 = 50; (*nm*)

R = (R1 + R2)/2;R = (R1 + R2)/2;R = (R1 + R2)/2;

Fmx[0.01,R1,R1,Msp]× 10−18 × 1012Fmx[0.01,R1,R1,Msp]× 10−18 × 1012Fmx[0.01,R1,R1,Msp]× 10−18 × 1012

Fmz[0.01,R1,R1,Msp]× 10−18 × 1012Fmz[0.01,R1,R1,Msp]× 10−18 × 1012Fmz[0.01,R1,R1,Msp]× 10−18 × 1012

datax = {};datax = {};datax = {};

x0 = −375;x0 = −375;x0 = −375;

xstep = 5;xstep = 5;xstep = 5;

Rstep = 50;Rstep = 50;Rstep = 50;

For[R1 = 5,R1 ≤ 260,R1 = R1 + Rstep,For[R1 = 5,R1 ≤ 260,R1 = R1 + Rstep,For[R1 = 5,R1 ≤ 260,R1 = R1 + Rstep,

Fx = Table [{x,Fmx[x,R1 + δ/2,R1,Msp]10−6} , {x, x0,−x0, xstep}] ;Fx = Table [{x,Fmx[x,R1 + δ/2,R1,Msp]10−6} , {x, x0,−x0, xstep}] ;Fx = Table [{x,Fmx[x,R1 + δ/2,R1,Msp]10−6} , {x, x0,−x0, xstep}] ;

datax = Append[datax,Fx];datax = Append[datax,Fx];datax = Append[datax,Fx];

]]]

forcex = ListPlot[datax,Frame→ True, Joined→ True,forcex = ListPlot[datax,Frame→ True, Joined→ True,forcex = ListPlot[datax,Frame→ True, Joined→ True,
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PlotStyle→ {{Red,AbsoluteThickness[3]}, {Green,AbsoluteThickness[3]},PlotStyle→ {{Red,AbsoluteThickness[3]}, {Green,AbsoluteThickness[3]},PlotStyle→ {{Red,AbsoluteThickness[3]}, {Green,AbsoluteThickness[3]},

{Blue,AbsoluteThickness[3]}, {Pink,AbsoluteThickness[3]},{Blue,AbsoluteThickness[3]}, {Pink,AbsoluteThickness[3]},{Blue,AbsoluteThickness[3]}, {Pink,AbsoluteThickness[3]},

{Yellow,AbsoluteThickness[3]}, {Black,AbsoluteThickness[3]}},{Yellow,AbsoluteThickness[3]}, {Black,AbsoluteThickness[3]}},{Yellow,AbsoluteThickness[3]}, {Black,AbsoluteThickness[3]}},

FrameLabel→ {{“Fx(pN)”,None}, {“x(nm)”,None}},LabelStyle→ Directive[24],FrameLabel→ {{“Fx(pN)”,None}, {“x(nm)”,None}},LabelStyle→ Directive[24],FrameLabel→ {{“Fx(pN)”,None}, {“x(nm)”,None}},LabelStyle→ Directive[24],

PlotLegends→PlotLegends→PlotLegends→

SwatchLegend[{“Z:5nm”, “Z:55nm”, “Z:105nm”, “Z:155nm”, “Z:205nm”, “Z:255nm”},SwatchLegend[{“Z:5nm”, “Z:55nm”, “Z:105nm”, “Z:155nm”, “Z:205nm”, “Z:255nm”},SwatchLegend[{“Z:5nm”, “Z:55nm”, “Z:105nm”, “Z:155nm”, “Z:205nm”, “Z:255nm”},

LegendMarkerSize→ 30],PlotRange→ {All,All}, ImageSize→ 600]LegendMarkerSize→ 30],PlotRange→ {All,All}, ImageSize→ 600]LegendMarkerSize→ 30],PlotRange→ {All,All}, ImageSize→ 600]

dataz = {};dataz = {};dataz = {};

x0 = −375;x0 = −375;x0 = −375;

xstep = 5;xstep = 5;xstep = 5;

Rstep = 50;Rstep = 50;Rstep = 50;

For[R1 = 5,R1 ≤ 260,R1 = R1 + Rstep,For[R1 = 5,R1 ≤ 260,R1 = R1 + Rstep,For[R1 = 5,R1 ≤ 260,R1 = R1 + Rstep,

Fz = Table [{x,Fmz[x,R1 + δ/2,R1,Msp]10−6} , {x, x0,−x0, xstep}] ;Fz = Table [{x,Fmz[x,R1 + δ/2,R1,Msp]10−6} , {x, x0,−x0, xstep}] ;Fz = Table [{x,Fmz[x,R1 + δ/2,R1,Msp]10−6} , {x, x0,−x0, xstep}] ;

dataz = Append[dataz,Fz];dataz = Append[dataz,Fz];dataz = Append[dataz,Fz];

]]]

forcez = ListPlot[dataz,Frame→ True, Joined→ True,forcez = ListPlot[dataz,Frame→ True, Joined→ True,forcez = ListPlot[dataz,Frame→ True, Joined→ True,

PlotStyle→ {{Red,AbsoluteThickness[3]}, {Green,AbsoluteThickness[3]},PlotStyle→ {{Red,AbsoluteThickness[3]}, {Green,AbsoluteThickness[3]},PlotStyle→ {{Red,AbsoluteThickness[3]}, {Green,AbsoluteThickness[3]},

{Blue,AbsoluteThickness[3]}, {Pink,AbsoluteThickness[3]},{Blue,AbsoluteThickness[3]}, {Pink,AbsoluteThickness[3]},{Blue,AbsoluteThickness[3]}, {Pink,AbsoluteThickness[3]},

{Yellow,AbsoluteThickness[3]}, {Black,AbsoluteThickness[3]}},{Yellow,AbsoluteThickness[3]}, {Black,AbsoluteThickness[3]}},{Yellow,AbsoluteThickness[3]}, {Black,AbsoluteThickness[3]}},

FrameLabel→ {{“Fz(pN)”,None}, {“x(nm)”,None}},LabelStyle→ Directive[24],FrameLabel→ {{“Fz(pN)”,None}, {“x(nm)”,None}},LabelStyle→ Directive[24],FrameLabel→ {{“Fz(pN)”,None}, {“x(nm)”,None}},LabelStyle→ Directive[24],

PlotLegends→PlotLegends→PlotLegends→

SwatchLegend[{“Z:5nm”, “Z:55nm”, “Z:105nm”, “Z:155nm”, “Z:205nm”, “Z:255nm”},SwatchLegend[{“Z:5nm”, “Z:55nm”, “Z:105nm”, “Z:155nm”, “Z:205nm”, “Z:255nm”},SwatchLegend[{“Z:5nm”, “Z:55nm”, “Z:105nm”, “Z:155nm”, “Z:205nm”, “Z:255nm”},

LegendMarkerSize→ 30],PlotRange→ {All,All}, ImageSize→ 600]LegendMarkerSize→ 30],PlotRange→ {All,All}, ImageSize→ 600]LegendMarkerSize→ 30],PlotRange→ {All,All}, ImageSize→ 600]
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NP Capture for 40 uL/40 mL : initial version 1, calculate version2

General

time = 600; (*Coating time*)time = 600; (*Coating time*)time = 600; (*Coating time*)

µ0 = 4× Pi× 10−7;µ0 = 4× Pi× 10−7;µ0 = 4× Pi× 10−7;

Msp = 0.56/µ0; (*particleSaturationM ; inA/m*)Msp = 0.56/µ0; (*particleSaturationM ; inA/m*)Msp = 0.56/µ0; (*particleSaturationM ; inA/m*)

R1 = 5; (*particleradium; innm*)R1 = 5; (*particleradium; innm*)R1 = 5; (*particleradium; innm*)

ρ = 5.175; (*particledensity; g/cm3*)ρ = 5.175; (*particledensity; g/cm3*)ρ = 5.175; (*particledensity; g/cm3*)

vp = 4Pi/3 ∗ R1310−27; (* particle volume of NP in m3*)vp = 4Pi/3 ∗ R1310−27; (* particle volume of NP in m3*)vp = 4Pi/3 ∗ R1310−27; (* particle volume of NP in m3*)

m = ρ103vp1018; (*particlemass,multiply1018tocompensatetheforceunits;m = ρ103vp1018; (*particlemass,multiply1018tocompensatetheforceunits;m = ρ103vp1018; (*particlemass,multiply1018tocompensatetheforceunits;

inkg*)inkg*)inkg*)

η = 0.001; (*fluidviscosity; Ns/m2*)η = 0.001; (*fluidviscosity; Ns/m2*)η = 0.001; (*fluidviscosity; Ns/m2*)

vol = 40 ∗ 0.02 10−610−3;vol = 40 ∗ 0.02 10−610−3;vol = 40 ∗ 0.02 10−610−3;

(*totalvolumeofpartilcesfrom40uLEMG707stocksolutions; inm3*)(*totalvolumeofpartilcesfrom40uLEMG707stocksolutions; inm3*)(*totalvolumeofpartilcesfrom40uLEMG707stocksolutions; inm3*)

n = vol
/(

4Pi/3R1310−27
)

; (*NP # in 40uL EMG 707 stock solutions*)n = vol
/(

4Pi/3R1310−27
)

; (*NP # in 40uL EMG 707 stock solutions*)n = vol
/(

4Pi/3R1310−27
)

; (*NP # in 40uL EMG 707 stock solutions*)

conc = n/40; (*notusedinthetrajectorysimulations; in1/mL*)conc = n/40; (*notusedinthetrajectorysimulations; in1/mL*)conc = n/40; (*notusedinthetrajectorysimulations; in1/mL*)

d = 3
√

40 1021/n; (*sizeofcubeside/NP,d = 3
√

40 1021/n; (*sizeofcubeside/NP,d = 3
√

40 1021/n; (*sizeofcubeside/NP,

assumeNPoccupiesthespaceofacubeindilutedfluid; innm*)assumeNPoccupiesthespaceofacubeindilutedfluid; innm*)assumeNPoccupiesthespaceofacubeindilutedfluid; innm*)

x0 = −375; (*halfofthetransitioncellinxdirection; innm*)x0 = −375; (*halfofthetransitioncellinxdirection; innm*)x0 = −375; (*halfofthetransitioncellinxdirection; innm*)

h0 = 0.5; (*heightoffluidcell; inmm*)h0 = 0.5; (*heightoffluidcell; inmm*)h0 = 0.5; (*heightoffluidcell; inmm*)

(*LookforfarestNPthatcanreachdiskdrivesurfacewithincoatingtime;(*LookforfarestNPthatcanreachdiskdrivesurfacewithincoatingtime;(*LookforfarestNPthatcanreachdiskdrivesurfacewithincoatingtime;

innm*)innm*)innm*)

t0 = time2;t0 = time2;t0 = time2;
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zi = 0.1 106 + δ/2; (*know particle at zi will not reach the disk surface*)zi = 0.1 106 + δ/2; (*know particle at zi will not reach the disk surface*)zi = 0.1 106 + δ/2; (*know particle at zi will not reach the disk surface*)

xi = 0;xi = 0;xi = 0;

step = d;step = d;step = d;

spacing = 750; (*gratingspacing; innm*)spacing = 750; (*gratingspacing; innm*)spacing = 750; (*gratingspacing; innm*)

(*find max zi that could reach disk drive*)(*find max zi that could reach disk drive*)(*find max zi that could reach disk drive*)

end = d;end = d;end = d;

While[!NumericQ[end],While[!NumericQ[end],While[!NumericQ[end],

Clear[sol];Clear[sol];Clear[sol];

sol =sol =sol =

First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,

z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m, x[0] == xi,z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m, x[0] == xi,z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m, x[0] == xi,

z[0] == zi, x′[0] == 0, z′[0] == 0}, {x, z}, {t, 0, t0},z[0] == zi, x′[0] == 0, z′[0] == 0}, {x, z}, {t, 0, t0},z[0] == zi, x′[0] == 0, z′[0] == 0}, {x, z}, {t, 0, t0},

Method→ {“EventLocator”, “Event”→ z[t]− δ/2,Method→ {“EventLocator”, “Event”→ z[t]− δ/2,Method→ {“EventLocator”, “Event”→ z[t]− δ/2,

“EventAction” :→ Throw[end = t, “StopIntegration”], “Direction”→ −1,“EventAction” :→ Throw[end = t, “StopIntegration”], “Direction”→ −1,“EventAction” :→ Throw[end = t, “StopIntegration”], “Direction”→ −1,

“EventLocationMethod”→ “LinearInterpolation”}]];“EventLocationMethod”→ “LinearInterpolation”}]];“EventLocationMethod”→ “LinearInterpolation”}]];

zi = zi− step;zi = zi− step;zi = zi− step;

]; (*NumericallysolveforNewton′s2ndlaw*)]; (*NumericallysolveforNewton′s2ndlaw*)]; (*NumericallysolveforNewton′s2ndlaw*)

zi = zi + d;zi = zi + d;zi = zi + d;

Concentration1 = 40 uL/40 mL

(*AssigninitalNPpositionsin2_D(i.e., x− zplane)assuminginitial(*AssigninitalNPpositionsin2_D(i.e., x− zplane)assuminginitial(*AssigninitalNPpositionsin2_D(i.e., x− zplane)assuminginitial

uniformdistributionrandomly;x = equalgrid, firstzrandom, otherz = equalgrid*)uniformdistributionrandomly;x = equalgrid, firstzrandom, otherz = equalgrid*)uniformdistributionrandomly;x = equalgrid, firstzrandom, otherz = equalgrid*)

xi = 50000; (*xi/spacing = numberofgratinglines*)xi = 50000; (*xi/spacing = numberofgratinglines*)xi = 50000; (*xi/spacing = numberofgratinglines*)

xx = Table[0, {i,Floor[xi/d] + 1}, {j,Floor[zi/d] + 1}];xx = Table[0, {i,Floor[xi/d] + 1}, {j,Floor[zi/d] + 1}];xx = Table[0, {i,Floor[xi/d] + 1}, {j,Floor[zi/d] + 1}];

zz = Table[0, {i,Floor[xi/d] + 1}, {j,Floor[zi/d] + 1}];zz = Table[0, {i,Floor[xi/d] + 1}, {j,Floor[zi/d] + 1}];zz = Table[0, {i,Floor[xi/d] + 1}, {j,Floor[zi/d] + 1}];

(*arrays for NP intitial postions*)(*arrays for NP intitial postions*)(*arrays for NP intitial postions*)
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zz1 = {}; (*for debug usage*)zz1 = {}; (*for debug usage*)zz1 = {}; (*for debug usage*)

For[i = 1, i ≤ Floor[xi/d] + 1, i++,For[i = 1, i ≤ Floor[xi/d] + 1, i++,For[i = 1, i ≤ Floor[xi/d] + 1, i++,

For[j = 1, j ≤ Floor[zi/d] + 1, j++,For[j = 1, j ≤ Floor[zi/d] + 1, j++,For[j = 1, j ≤ Floor[zi/d] + 1, j++,

If[i == 1, xx[[i, j]] = dRandomReal[], temp = Mod[(i− 1)d+ xx[[1, j]], spacing];If[i == 1, xx[[i, j]] = dRandomReal[], temp = Mod[(i− 1)d+ xx[[1, j]], spacing];If[i == 1, xx[[i, j]] = dRandomReal[], temp = Mod[(i− 1)d+ xx[[1, j]], spacing];

xx[[i, j]] = If[temp ≤ spacing/2, temp, temp− spacing]; ];xx[[i, j]] = If[temp ≤ spacing/2, temp, temp− spacing]; ];xx[[i, j]] = If[temp ≤ spacing/2, temp, temp− spacing]; ];

If[j == 1, zz[[i, j]] = dRandomReal[] + δ/2; zz1 = Append[zz1, zz[[i, j]]],If[j == 1, zz[[i, j]] = dRandomReal[] + δ/2; zz1 = Append[zz1, zz[[i, j]]],If[j == 1, zz[[i, j]] = dRandomReal[] + δ/2; zz1 = Append[zz1, zz[[i, j]]],

zz[[i, j]] = zz[[i, 1]] + d(j − 1)];zz[[i, j]] = zz[[i, 1]] + d(j − 1)];zz[[i, j]] = zz[[i, 1]] + d(j − 1)];

];];];

]; (*Allparticlepositionsaretreatedinasingletransition,]; (*Allparticlepositionsaretreatedinasingletransition,]; (*Allparticlepositionsaretreatedinasingletransition,

sincealltransitionsaretranslatedbygratingspacing;sincealltransitionsaretranslatedbygratingspacing;sincealltransitionsaretranslatedbygratingspacing;

Initialpositionsaresimplified.MorecomplexmethodwillbeusedtobetterInitialpositionsaresimplified.MorecomplexmethodwillbeusedtobetterInitialpositionsaresimplified.Morecomplexmethodwillbeusedtobetter

simulateinititalpositions*)simulateinititalpositions*)simulateinititalpositions*)

(*calculate the trajectory for each NP*)(*calculate the trajectory for each NP*)(*calculate the trajectory for each NP*)

tkey = {}; (*time for NP to reach the disk surface*)tkey = {}; (*time for NP to reach the disk surface*)tkey = {}; (*time for NP to reach the disk surface*)

tindex = {}; (*only for debug usage*)tindex = {}; (*only for debug usage*)tindex = {}; (*only for debug usage*)

xkey1 = {}; (*x position for NP to reach the surface*)xkey1 = {}; (*x position for NP to reach the surface*)xkey1 = {}; (*x position for NP to reach the surface*)

CTkey = Timing[For[i = 1, i ≤ Floor[xi/d] + 1, i++,CTkey = Timing[For[i = 1, i ≤ Floor[xi/d] + 1, i++,CTkey = Timing[For[i = 1, i ≤ Floor[xi/d] + 1, i++,

For[j = 1, j ≤ Floor[zi/d] + 1, j++,For[j = 1, j ≤ Floor[zi/d] + 1, j++,For[j = 1, j ≤ Floor[zi/d] + 1, j++,

sol = First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,sol = First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,sol = First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,

z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m, x[0] == xx[[i, j]],z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m, x[0] == xx[[i, j]],z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m, x[0] == xx[[i, j]],

z[0] == zz[[i, j]], x′[0] == 0, z′[0] == 0}, {x, z}, {t, 0, t0},z[0] == zz[[i, j]], x′[0] == 0, z′[0] == 0}, {x, z}, {t, 0, t0},z[0] == zz[[i, j]], x′[0] == 0, z′[0] == 0}, {x, z}, {t, 0, t0},

Method→ {“EventLocator”, “Event”→ z[t]− δ/2,Method→ {“EventLocator”, “Event”→ z[t]− δ/2,Method→ {“EventLocator”, “Event”→ z[t]− δ/2,

“EventAction” :→ Throw[endt = t, “StopIntegration”], “Direction”→ −1,“EventAction” :→ Throw[endt = t, “StopIntegration”], “Direction”→ −1,“EventAction” :→ Throw[endt = t, “StopIntegration”], “Direction”→ −1,

“EventLocationMethod”→ “LinearInterpolation”}]];“EventLocationMethod”→ “LinearInterpolation”}]];“EventLocationMethod”→ “LinearInterpolation”}]];

tkey = Append[tkey, endt];tkey = Append[tkey, endt];tkey = Append[tkey, endt];

xkey1 = Append[xkey1,Evaluate[x[endt]/.sol]];xkey1 = Append[xkey1,Evaluate[x[endt]/.sol]];xkey1 = Append[xkey1,Evaluate[x[endt]/.sol]];
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tindex = Append[tindex, {xx[[i, j]], zz[[i, j]], endt}]tindex = Append[tindex, {xx[[i, j]], zz[[i, j]], endt}]tindex = Append[tindex, {xx[[i, j]], zz[[i, j]], endt}]

];];];

];];];

];];];

(*calculate NPs within time t*)(*calculate NPs within time t*)(*calculate NPs within time t*)

bins = BinCounts[tkey, 0.1];bins = BinCounts[tkey, 0.1];bins = BinCounts[tkey, 0.1];

NP = {};NP = {};NP = {};

For[i = 1, i ≤ 9, i++,For[i = 1, i ≤ 9, i++,For[i = 1, i ≤ 9, i++,

tempdata = Take[bins, {1, i}];tempdata = Take[bins, {1, i}];tempdata = Take[bins, {1, i}];

NP = Append[NP, {i0.1,Total[tempdata]}];NP = Append[NP, {i0.1,Total[tempdata]}];NP = Append[NP, {i0.1,Total[tempdata]}];

];];];

bins = BinCounts[tkey, 1];bins = BinCounts[tkey, 1];bins = BinCounts[tkey, 1];

For[i = 1, i ≤ Length[bins], i++,For[i = 1, i ≤ Length[bins], i++,For[i = 1, i ≤ Length[bins], i++,

tempdata = Take[bins, {1, i}];tempdata = Take[bins, {1, i}];tempdata = Take[bins, {1, i}];

NP = Append[NP, {i,Total[tempdata]}];NP = Append[NP, {i,Total[tempdata]}];NP = Append[NP, {i,Total[tempdata]}];

];];];

(*Calculate Intensity within time t *)(*Calculate Intensity within time t *)(*Calculate Intensity within time t *)

xds1 = Table[{}, {i, 1, time, 1}];xds1 = Table[{}, {i, 1, time, 1}];xds1 = Table[{}, {i, 1, time, 1}];

nps1 = Table[0, {i, 1, time, 1}];nps1 = Table[0, {i, 1, time, 1}];nps1 = Table[0, {i, 1, time, 1}];

For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,

For[i = 1, i ≤ Length[tkey], i = i+ 1,For[i = 1, i ≤ Length[tkey], i = i+ 1,For[i = 1, i ≤ Length[tkey], i = i+ 1,

If[tkey[[i]] < j, nps1[[j]] = nps1[[j]] + 1;If[tkey[[i]] < j, nps1[[j]] = nps1[[j]] + 1;If[tkey[[i]] < j, nps1[[j]] = nps1[[j]] + 1;

xds1[[j]] = Append[xds1[[j]], xkey1[[i]]]];xds1[[j]] = Append[xds1[[j]], xkey1[[i]]]];xds1[[j]] = Append[xds1[[j]], xkey1[[i]]]];

];];];

];];];

181



www.manaraa.com

intesity1 = Table[{i, 0}, {i, 1, time, 1}];intesity1 = Table[{i, 0}, {i, 1, time, 1}];intesity1 = Table[{i, 0}, {i, 1, time, 1}];

For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,

tempI = 0;tempI = 0;tempI = 0;

For[i = 1, i ≤ Length[xds1[[j]]], i++,For[i = 1, i ≤ Length[xds1[[j]]], i++,For[i = 1, i ≤ Length[xds1[[j]]], i++,

tempI = tempI + E∧(I2Pi(spacing + xds1[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds1[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds1[[j, i]])/spacing);

];];];

intesity1[[j, 2]] = Abs[tempI]∧2;intesity1[[j, 2]] = Abs[tempI]∧2;intesity1[[j, 2]] = Abs[tempI]∧2;

];];];

xds10 = Table[{}, {i, 0.1, 0.9, 0.1}]; (*CalculateIntensityfort < 1*)xds10 = Table[{}, {i, 0.1, 0.9, 0.1}]; (*CalculateIntensityfort < 1*)xds10 = Table[{}, {i, 0.1, 0.9, 0.1}]; (*CalculateIntensityfort < 1*)

intesity10 = Table[{i, 0}, {i, 0.1, 0.9, 0.1}];intesity10 = Table[{i, 0}, {i, 0.1, 0.9, 0.1}];intesity10 = Table[{i, 0}, {i, 0.1, 0.9, 0.1}];

For[j = 1, j ≤ Length[intesity10], j = j + 1,For[j = 1, j ≤ Length[intesity10], j = j + 1,For[j = 1, j ≤ Length[intesity10], j = j + 1,

For[i = 1, i ≤ Length[tkey], i = i+ 1,For[i = 1, i ≤ Length[tkey], i = i+ 1,For[i = 1, i ≤ Length[tkey], i = i+ 1,

If[tkey[[i]] < intesity10[[j, 1]], xds10[[j]] = Append[xds10[[j]], xkey1[[i]]]];If[tkey[[i]] < intesity10[[j, 1]], xds10[[j]] = Append[xds10[[j]], xkey1[[i]]]];If[tkey[[i]] < intesity10[[j, 1]], xds10[[j]] = Append[xds10[[j]], xkey1[[i]]]];

];];];

];];];

For[j = 1, j ≤ Length[intesity10], j = j + 1,For[j = 1, j ≤ Length[intesity10], j = j + 1,For[j = 1, j ≤ Length[intesity10], j = j + 1,

tempI = 0;tempI = 0;tempI = 0;

For[i = 1, i ≤ Length[xds10[[j]]], i++,For[i = 1, i ≤ Length[xds10[[j]]], i++,For[i = 1, i ≤ Length[xds10[[j]]], i++,

tempI = tempI + E∧(I2Pi(spacing + xds10[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds10[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds10[[j, i]])/spacing);

];];];

intesity10[[j, 2]] = Abs[tempI]∧2;intesity10[[j, 2]] = Abs[tempI]∧2;intesity10[[j, 2]] = Abs[tempI]∧2;

]]]

intesity100 = Join[intesity10, intesity1];intesity100 = Join[intesity10, intesity1];intesity100 = Join[intesity10, intesity1];
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Concentration1/2

d2 = d 3
√

2;d2 = d 3
√

2;d2 = d 3
√

2;

(*AssignNPgridsassuminginitialuniformdistributionrandomly;x = equalgrid,(*AssignNPgridsassuminginitialuniformdistributionrandomly;x = equalgrid,(*AssignNPgridsassuminginitialuniformdistributionrandomly;x = equalgrid,

firstzrandom, otherz = equalgrid*)firstzrandom, otherz = equalgrid*)firstzrandom, otherz = equalgrid*)

xi = 50000;xi = 50000;xi = 50000;

(*zi = 6113.34; *)(*zi = 6113.34; *)(*zi = 6113.34; *)

xx2 = Table[0, {i,Floor[xi/d2] + 1}, {j,Floor[zi/d2] + 1}];xx2 = Table[0, {i,Floor[xi/d2] + 1}, {j,Floor[zi/d2] + 1}];xx2 = Table[0, {i,Floor[xi/d2] + 1}, {j,Floor[zi/d2] + 1}];

zz2 = Table[0, {i,Floor[xi/d2] + 1}, {j,Floor[zi/d2] + 1}];zz2 = Table[0, {i,Floor[xi/d2] + 1}, {j,Floor[zi/d2] + 1}];zz2 = Table[0, {i,Floor[xi/d2] + 1}, {j,Floor[zi/d2] + 1}];

zz3 = {};zz3 = {};zz3 = {};

For[i = 1, i ≤ Floor[xi/d2] + 1, i++,For[i = 1, i ≤ Floor[xi/d2] + 1, i++,For[i = 1, i ≤ Floor[xi/d2] + 1, i++,

For[j = 1, j ≤ Floor[zi/d2] + 1, j++,For[j = 1, j ≤ Floor[zi/d2] + 1, j++,For[j = 1, j ≤ Floor[zi/d2] + 1, j++,

If[i == 1, xx2[[i, j]] = d2RandomReal[], temp = Mod[(i− 1)d2 + xx2[[1, j]], spacing];If[i == 1, xx2[[i, j]] = d2RandomReal[], temp = Mod[(i− 1)d2 + xx2[[1, j]], spacing];If[i == 1, xx2[[i, j]] = d2RandomReal[], temp = Mod[(i− 1)d2 + xx2[[1, j]], spacing];

xx2[[i, j]] = If[temp ≤ spacing/2, temp, temp− spacing]; ];xx2[[i, j]] = If[temp ≤ spacing/2, temp, temp− spacing]; ];xx2[[i, j]] = If[temp ≤ spacing/2, temp, temp− spacing]; ];

If[j == 1, zz2[[i, j]] = d2 RandomReal[] + δ/2; zz3 = Append[zz3, zz2[[i, j]]],If[j == 1, zz2[[i, j]] = d2 RandomReal[] + δ/2; zz3 = Append[zz3, zz2[[i, j]]],If[j == 1, zz2[[i, j]] = d2 RandomReal[] + δ/2; zz3 = Append[zz3, zz2[[i, j]]],

zz2[[i, j]] = zz2[[i, 1]] + d2(j − 1)];zz2[[i, j]] = zz2[[i, 1]] + d2(j − 1)];zz2[[i, j]] = zz2[[i, 1]] + d2(j − 1)];

];];];

];];];

(*calculatethetrajectoryforeachNPforconc1/2*)(*calculatethetrajectoryforeachNPforconc1/2*)(*calculatethetrajectoryforeachNPforconc1/2*)

tkey2 = {};tkey2 = {};tkey2 = {};

tindex2 = {};tindex2 = {};tindex2 = {};

xkey2 = {};xkey2 = {};xkey2 = {};

CTkey2 = Timing[For[i = 1, i ≤ Floor[xi/d2] + 1, i++,CTkey2 = Timing[For[i = 1, i ≤ Floor[xi/d2] + 1, i++,CTkey2 = Timing[For[i = 1, i ≤ Floor[xi/d2] + 1, i++,

For[j = 1, j ≤ Floor[zi/d2] + 1, j++,For[j = 1, j ≤ Floor[zi/d2] + 1, j++,For[j = 1, j ≤ Floor[zi/d2] + 1, j++,

sol = First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,sol = First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,sol = First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,
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z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m,z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m,z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m,

x[0] == xx2[[i, j]], z[0] == zz2[[i, j]], x′[0] == 0, z′[0] == 0},x[0] == xx2[[i, j]], z[0] == zz2[[i, j]], x′[0] == 0, z′[0] == 0},x[0] == xx2[[i, j]], z[0] == zz2[[i, j]], x′[0] == 0, z′[0] == 0},

{x, z}, {t, 0, t0},Method→ {“EventLocator”, “Event”→ z[t]− δ/2,{x, z}, {t, 0, t0},Method→ {“EventLocator”, “Event”→ z[t]− δ/2,{x, z}, {t, 0, t0},Method→ {“EventLocator”, “Event”→ z[t]− δ/2,

“EventAction” :→ Throw[endt = t, “StopIntegration”], “Direction”→ −1,“EventAction” :→ Throw[endt = t, “StopIntegration”], “Direction”→ −1,“EventAction” :→ Throw[endt = t, “StopIntegration”], “Direction”→ −1,

“EventLocationMethod”→ “LinearInterpolation”}]];“EventLocationMethod”→ “LinearInterpolation”}]];“EventLocationMethod”→ “LinearInterpolation”}]];

tkey2 = Append[tkey2, endt];tkey2 = Append[tkey2, endt];tkey2 = Append[tkey2, endt];

xkey2 = Append[xkey2,Evaluate[x[endt]/.sol]];xkey2 = Append[xkey2,Evaluate[x[endt]/.sol]];xkey2 = Append[xkey2,Evaluate[x[endt]/.sol]];

tindex2 = Append[tindex2, {xx2[[i, j]], zz2[[i, j]], endt}]tindex2 = Append[tindex2, {xx2[[i, j]], zz2[[i, j]], endt}]tindex2 = Append[tindex2, {xx2[[i, j]], zz2[[i, j]], endt}]

];];];

];];];

];];];

bins2 = BinCounts[tkey2, 0.1];bins2 = BinCounts[tkey2, 0.1];bins2 = BinCounts[tkey2, 0.1];

NP2 = {};NP2 = {};NP2 = {};

For[i = 1, i ≤ 9, i++,For[i = 1, i ≤ 9, i++,For[i = 1, i ≤ 9, i++,

tempdata = Take[bins2, {1, i}];tempdata = Take[bins2, {1, i}];tempdata = Take[bins2, {1, i}];

NP2 = Append[NP2, {i0.1,Total[tempdata]}];NP2 = Append[NP2, {i0.1,Total[tempdata]}];NP2 = Append[NP2, {i0.1,Total[tempdata]}];

];];];

bins2 = BinCounts[tkey2, 1];bins2 = BinCounts[tkey2, 1];bins2 = BinCounts[tkey2, 1];

For[i = 1, i ≤ Length[bins2], i++,For[i = 1, i ≤ Length[bins2], i++,For[i = 1, i ≤ Length[bins2], i++,

tempdata = Take[bins2, {1, i}];tempdata = Take[bins2, {1, i}];tempdata = Take[bins2, {1, i}];

NP2 = Append[NP2, {i,Total[tempdata]}];NP2 = Append[NP2, {i,Total[tempdata]}];NP2 = Append[NP2, {i,Total[tempdata]}];

];];];

xds2 = Table[{}, {i, 1, time, 1}];xds2 = Table[{}, {i, 1, time, 1}];xds2 = Table[{}, {i, 1, time, 1}];

nps2 = Table[0, {i, 1, time, 1}];nps2 = Table[0, {i, 1, time, 1}];nps2 = Table[0, {i, 1, time, 1}];

For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,
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For[i = 1, i ≤ Length[tkey2], i = i+ 1,For[i = 1, i ≤ Length[tkey2], i = i+ 1,For[i = 1, i ≤ Length[tkey2], i = i+ 1,

If[tkey2[[i]] < j, nps2[[j]] = nps2[[j]] + 1;If[tkey2[[i]] < j, nps2[[j]] = nps2[[j]] + 1;If[tkey2[[i]] < j, nps2[[j]] = nps2[[j]] + 1;

xds2[[j]] = Append[xds2[[j]], xkey2[[i]]]];xds2[[j]] = Append[xds2[[j]], xkey2[[i]]]];xds2[[j]] = Append[xds2[[j]], xkey2[[i]]]];

];];];

];];];

intesity2 = Table[{i, 0}, {i, 1, time, 1}];intesity2 = Table[{i, 0}, {i, 1, time, 1}];intesity2 = Table[{i, 0}, {i, 1, time, 1}];

For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,

tempI = 0;tempI = 0;tempI = 0;

For[i = 1, i ≤ Length[xds2[[j]]], i++,For[i = 1, i ≤ Length[xds2[[j]]], i++,For[i = 1, i ≤ Length[xds2[[j]]], i++,

tempI = tempI + E∧(I2Pi(spacing + xds2[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds2[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds2[[j, i]])/spacing);

];];];

intesity2[[j, 2]] = Abs[tempI]∧2;intesity2[[j, 2]] = Abs[tempI]∧2;intesity2[[j, 2]] = Abs[tempI]∧2;

];];];

xds20 = Table[{}, {i, 0.1, 0.9, 0.1}];xds20 = Table[{}, {i, 0.1, 0.9, 0.1}];xds20 = Table[{}, {i, 0.1, 0.9, 0.1}];

intesity20 = Table[{i, 0}, {i, 0.1, 0.9, 0.1}];intesity20 = Table[{i, 0}, {i, 0.1, 0.9, 0.1}];intesity20 = Table[{i, 0}, {i, 0.1, 0.9, 0.1}];

For[j = 1, j ≤ Length[intesity20], j = j + 1,For[j = 1, j ≤ Length[intesity20], j = j + 1,For[j = 1, j ≤ Length[intesity20], j = j + 1,

For[i = 1, i ≤ Length[tkey2], i = i+ 1,For[i = 1, i ≤ Length[tkey2], i = i+ 1,For[i = 1, i ≤ Length[tkey2], i = i+ 1,

If[tkey2[[i]] < intesity20[[j, 1]], xds20[[j]] = Append[xds20[[j]], xkey2[[i]]]];If[tkey2[[i]] < intesity20[[j, 1]], xds20[[j]] = Append[xds20[[j]], xkey2[[i]]]];If[tkey2[[i]] < intesity20[[j, 1]], xds20[[j]] = Append[xds20[[j]], xkey2[[i]]]];

];];];

];];];

For[j = 1, j ≤ Length[intesity20], j = j + 1,For[j = 1, j ≤ Length[intesity20], j = j + 1,For[j = 1, j ≤ Length[intesity20], j = j + 1,

tempI = 0;tempI = 0;tempI = 0;

For[i = 1, i ≤ Length[xds20[[j]]], i++,For[i = 1, i ≤ Length[xds20[[j]]], i++,For[i = 1, i ≤ Length[xds20[[j]]], i++,

tempI = tempI + E∧(I2Pi(spacing + xds20[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds20[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds20[[j, i]])/spacing);

];];];

intesity20[[j, 2]] = Abs[tempI]∧2; ;intesity20[[j, 2]] = Abs[tempI]∧2; ;intesity20[[j, 2]] = Abs[tempI]∧2; ;
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]]]

intesity200 = Join[intesity20, intesity2];intesity200 = Join[intesity20, intesity2];intesity200 = Join[intesity20, intesity2];

Concentration1/4

d3 = d
/

3
√

1/4 ;d3 = d
/

3
√

1/4 ;d3 = d
/

3
√

1/4 ;

xi = 50000;xi = 50000;xi = 50000;

(*zi = 6113.34; *)(*zi = 6113.34; *)(*zi = 6113.34; *)

xx3 = Table[0, {i,Floor[xi/d3] + 1}, {j,Floor[zi/d3] + 1}];xx3 = Table[0, {i,Floor[xi/d3] + 1}, {j,Floor[zi/d3] + 1}];xx3 = Table[0, {i,Floor[xi/d3] + 1}, {j,Floor[zi/d3] + 1}];

zz33 = Table[0, {i,Floor[xi/d3] + 1}, {j,Floor[zi/d3] + 1}];zz33 = Table[0, {i,Floor[xi/d3] + 1}, {j,Floor[zi/d3] + 1}];zz33 = Table[0, {i,Floor[xi/d3] + 1}, {j,Floor[zi/d3] + 1}];

zz34 = {};zz34 = {};zz34 = {};

For[i = 1, i ≤ Floor[xi/d3] + 1, i++,For[i = 1, i ≤ Floor[xi/d3] + 1, i++,For[i = 1, i ≤ Floor[xi/d3] + 1, i++,

For[j = 1, j ≤ Floor[zi/d3] + 1, j++,For[j = 1, j ≤ Floor[zi/d3] + 1, j++,For[j = 1, j ≤ Floor[zi/d3] + 1, j++,

If[i == 1, xx3[[i, j]] = d3RandomReal[], temp = Mod[(i− 1)d3 + xx3[[1, j]], spacing];If[i == 1, xx3[[i, j]] = d3RandomReal[], temp = Mod[(i− 1)d3 + xx3[[1, j]], spacing];If[i == 1, xx3[[i, j]] = d3RandomReal[], temp = Mod[(i− 1)d3 + xx3[[1, j]], spacing];

xx3[[i, j]] = If[temp ≤ spacing/2, temp, temp− spacing]; ];xx3[[i, j]] = If[temp ≤ spacing/2, temp, temp− spacing]; ];xx3[[i, j]] = If[temp ≤ spacing/2, temp, temp− spacing]; ];

If[j == 1, zz33[[i, j]] = d3 RandomReal[] + δ/2; zz34 = Append[zz34, zz33[[i, j]]],If[j == 1, zz33[[i, j]] = d3 RandomReal[] + δ/2; zz34 = Append[zz34, zz33[[i, j]]],If[j == 1, zz33[[i, j]] = d3 RandomReal[] + δ/2; zz34 = Append[zz34, zz33[[i, j]]],

zz33[[i, j]] = zz33[[i, 1]] + d3(j − 1)];zz33[[i, j]] = zz33[[i, 1]] + d3(j − 1)];zz33[[i, j]] = zz33[[i, 1]] + d3(j − 1)];

];];];

];];];

(*calculatethetrajectoryforeachNPforconc1/4*)(*calculatethetrajectoryforeachNPforconc1/4*)(*calculatethetrajectoryforeachNPforconc1/4*)

tkey3 = {};tkey3 = {};tkey3 = {};

tindex3 = {};tindex3 = {};tindex3 = {};

xkey3 = {};xkey3 = {};xkey3 = {};

CTkey3 = Timing[For[i = 1, i ≤ Floor[xi/d3] + 1, i++,CTkey3 = Timing[For[i = 1, i ≤ Floor[xi/d3] + 1, i++,CTkey3 = Timing[For[i = 1, i ≤ Floor[xi/d3] + 1, i++,

For[j = 1, j ≤ Floor[zi/d3] + 1, j++,For[j = 1, j ≤ Floor[zi/d3] + 1, j++,For[j = 1, j ≤ Floor[zi/d3] + 1, j++,
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sol = First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,sol = First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,sol = First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,

z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m,z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m,z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m,

x[0] == xx3[[i, j]], z[0] == zz33[[i, j]], x′[0] == 0, z′[0] == 0},x[0] == xx3[[i, j]], z[0] == zz33[[i, j]], x′[0] == 0, z′[0] == 0},x[0] == xx3[[i, j]], z[0] == zz33[[i, j]], x′[0] == 0, z′[0] == 0},

{x, z}, {t, 0, t0},Method→ {“EventLocator”, “Event”→ z[t]− δ/2,{x, z}, {t, 0, t0},Method→ {“EventLocator”, “Event”→ z[t]− δ/2,{x, z}, {t, 0, t0},Method→ {“EventLocator”, “Event”→ z[t]− δ/2,

“EventAction” :→ Throw[endt = t, “StopIntegration”], “Direction”→ −1,“EventAction” :→ Throw[endt = t, “StopIntegration”], “Direction”→ −1,“EventAction” :→ Throw[endt = t, “StopIntegration”], “Direction”→ −1,

“EventLocationMethod”→ “LinearInterpolation”}]];“EventLocationMethod”→ “LinearInterpolation”}]];“EventLocationMethod”→ “LinearInterpolation”}]];

tkey3 = Append[tkey3, endt];tkey3 = Append[tkey3, endt];tkey3 = Append[tkey3, endt];

xkey3 = Append[xkey3,Evaluate[x[endt]/.sol]];xkey3 = Append[xkey3,Evaluate[x[endt]/.sol]];xkey3 = Append[xkey3,Evaluate[x[endt]/.sol]];

tindex3 = Append[tindex3, {xx3[[i, j]], zz33[[i, j]], endt}]tindex3 = Append[tindex3, {xx3[[i, j]], zz33[[i, j]], endt}]tindex3 = Append[tindex3, {xx3[[i, j]], zz33[[i, j]], endt}]

];];];

];];];

];];];

bins3 = BinCounts[tkey3, 0.1];bins3 = BinCounts[tkey3, 0.1];bins3 = BinCounts[tkey3, 0.1];

NP3 = {};NP3 = {};NP3 = {};

For[i = 1, i ≤ 9, i++,For[i = 1, i ≤ 9, i++,For[i = 1, i ≤ 9, i++,

tempdata = Take[bins3, {1, i}];tempdata = Take[bins3, {1, i}];tempdata = Take[bins3, {1, i}];

NP3 = Append[NP3, {i0.1,Total[tempdata]}];NP3 = Append[NP3, {i0.1,Total[tempdata]}];NP3 = Append[NP3, {i0.1,Total[tempdata]}];

];];];

bins3 = BinCounts[tkey3, 1];bins3 = BinCounts[tkey3, 1];bins3 = BinCounts[tkey3, 1];

For[i = 1, i ≤ Length[bins3], i++,For[i = 1, i ≤ Length[bins3], i++,For[i = 1, i ≤ Length[bins3], i++,

tempdata = Take[bins3, {1, i}];tempdata = Take[bins3, {1, i}];tempdata = Take[bins3, {1, i}];

NP3 = Append[NP3, {i,Total[tempdata]}];NP3 = Append[NP3, {i,Total[tempdata]}];NP3 = Append[NP3, {i,Total[tempdata]}];

];];];

xds3 = Table[{}, {i, 1, time, 1}];xds3 = Table[{}, {i, 1, time, 1}];xds3 = Table[{}, {i, 1, time, 1}];

nps3 = Table[0, {i, 1, time, 1}];nps3 = Table[0, {i, 1, time, 1}];nps3 = Table[0, {i, 1, time, 1}];
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For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,

For[i = 1, i ≤ Length[tkey3], i = i+ 1,For[i = 1, i ≤ Length[tkey3], i = i+ 1,For[i = 1, i ≤ Length[tkey3], i = i+ 1,

If[tkey3[[i]] < j, nps3[[j]] = nps3[[j]] + 1;If[tkey3[[i]] < j, nps3[[j]] = nps3[[j]] + 1;If[tkey3[[i]] < j, nps3[[j]] = nps3[[j]] + 1;

xds3[[j]] = Append[xds3[[j]], xkey3[[i]]]];xds3[[j]] = Append[xds3[[j]], xkey3[[i]]]];xds3[[j]] = Append[xds3[[j]], xkey3[[i]]]];

];];];

];];];

intesity3 = Table[{i, 0}, {i, 1, time, 1}];intesity3 = Table[{i, 0}, {i, 1, time, 1}];intesity3 = Table[{i, 0}, {i, 1, time, 1}];

For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,

tempI = 0;tempI = 0;tempI = 0;

For[i = 1, i ≤ Length[xds3[[j]]], i++,For[i = 1, i ≤ Length[xds3[[j]]], i++,For[i = 1, i ≤ Length[xds3[[j]]], i++,

tempI = tempI + E∧(I2Pi(spacing + xds3[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds3[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds3[[j, i]])/spacing);

];];];

intesity3[[j, 2]] = Abs[tempI]∧2;intesity3[[j, 2]] = Abs[tempI]∧2;intesity3[[j, 2]] = Abs[tempI]∧2;

];];];

xds30 = Table[{}, {i, 0.1, 0.9, 0.1}];xds30 = Table[{}, {i, 0.1, 0.9, 0.1}];xds30 = Table[{}, {i, 0.1, 0.9, 0.1}];

intesity30 = Table[{i, 0}, {i, 0.1, 0.9, 0.1}];intesity30 = Table[{i, 0}, {i, 0.1, 0.9, 0.1}];intesity30 = Table[{i, 0}, {i, 0.1, 0.9, 0.1}];

For[j = 1, j ≤ Length[intesity30], j = j + 1,For[j = 1, j ≤ Length[intesity30], j = j + 1,For[j = 1, j ≤ Length[intesity30], j = j + 1,

For[i = 1, i ≤ Length[tkey3], i = i+ 1,For[i = 1, i ≤ Length[tkey3], i = i+ 1,For[i = 1, i ≤ Length[tkey3], i = i+ 1,

If[tkey3[[i]] < intesity30[[j, 1]], xds30[[j]] = Append[xds30[[j]], xkey3[[i]]]];If[tkey3[[i]] < intesity30[[j, 1]], xds30[[j]] = Append[xds30[[j]], xkey3[[i]]]];If[tkey3[[i]] < intesity30[[j, 1]], xds30[[j]] = Append[xds30[[j]], xkey3[[i]]]];

];];];

];];];

For[j = 1, j ≤ Length[intesity30], j = j + 1,For[j = 1, j ≤ Length[intesity30], j = j + 1,For[j = 1, j ≤ Length[intesity30], j = j + 1,

tempI = 0;tempI = 0;tempI = 0;

For[i = 1, i ≤ Length[xds30[[j]]], i++,For[i = 1, i ≤ Length[xds30[[j]]], i++,For[i = 1, i ≤ Length[xds30[[j]]], i++,

tempI = tempI + E∧(I2Pi(spacing + xds30[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds30[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds30[[j, i]])/spacing);

];];];
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intesity30[[j, 2]] = Abs[tempI]∧2;intesity30[[j, 2]] = Abs[tempI]∧2;intesity30[[j, 2]] = Abs[tempI]∧2;

]]]

intesity300 = Join[intesity30, intesity3];intesity300 = Join[intesity30, intesity3];intesity300 = Join[intesity30, intesity3];

Concentration1/8

d4 = d
/

3
√

1/8 ;d4 = d
/

3
√

1/8 ;d4 = d
/

3
√

1/8 ;

xi = 50000;xi = 50000;xi = 50000;

(*zi = 6113.34; *)(*zi = 6113.34; *)(*zi = 6113.34; *)

xx4 = Table[0, {i,Floor[xi/d4] + 1}, {j,Floor[zi/d4] + 1}];xx4 = Table[0, {i,Floor[xi/d4] + 1}, {j,Floor[zi/d4] + 1}];xx4 = Table[0, {i,Floor[xi/d4] + 1}, {j,Floor[zi/d4] + 1}];

zz43 = Table[0, {i,Floor[xi/d4] + 1}, {j,Floor[zi/d4] + 1}];zz43 = Table[0, {i,Floor[xi/d4] + 1}, {j,Floor[zi/d4] + 1}];zz43 = Table[0, {i,Floor[xi/d4] + 1}, {j,Floor[zi/d4] + 1}];

zz44 = {};zz44 = {};zz44 = {};

For[i = 1, i ≤ Floor[xi/d4] + 1, i++,For[i = 1, i ≤ Floor[xi/d4] + 1, i++,For[i = 1, i ≤ Floor[xi/d4] + 1, i++,

For[j = 1, j ≤ Floor[zi/d4] + 1, j++,For[j = 1, j ≤ Floor[zi/d4] + 1, j++,For[j = 1, j ≤ Floor[zi/d4] + 1, j++,

If[i == 1, xx4[[i, j]] = d4RandomReal[], temp = Mod[(i− 1)d4 + xx4[[1, j]], spacing];If[i == 1, xx4[[i, j]] = d4RandomReal[], temp = Mod[(i− 1)d4 + xx4[[1, j]], spacing];If[i == 1, xx4[[i, j]] = d4RandomReal[], temp = Mod[(i− 1)d4 + xx4[[1, j]], spacing];

xx4[[i, j]] = If[temp ≤ spacing/2, temp, temp− spacing]; ];xx4[[i, j]] = If[temp ≤ spacing/2, temp, temp− spacing]; ];xx4[[i, j]] = If[temp ≤ spacing/2, temp, temp− spacing]; ];

If[j == 1, zz43[[i, j]] = d4 RandomReal[] + δ/2; zz44 = Append[zz44, zz43[[i, j]]],If[j == 1, zz43[[i, j]] = d4 RandomReal[] + δ/2; zz44 = Append[zz44, zz43[[i, j]]],If[j == 1, zz43[[i, j]] = d4 RandomReal[] + δ/2; zz44 = Append[zz44, zz43[[i, j]]],

zz43[[i, j]] = zz43[[i, 1]] + d4(j − 1)];zz43[[i, j]] = zz43[[i, 1]] + d4(j − 1)];zz43[[i, j]] = zz43[[i, 1]] + d4(j − 1)];

];];];

];];];

(*calculatethetrajectoryforeachNPforconc1/8*)(*calculatethetrajectoryforeachNPforconc1/8*)(*calculatethetrajectoryforeachNPforconc1/8*)

tkey4 = {};tkey4 = {};tkey4 = {};

tindex4 = {};tindex4 = {};tindex4 = {};

xkey4 = {};xkey4 = {};xkey4 = {};

CTkey4 = Timing[For[i = 1, i ≤ Floor[xi/d4] + 1, i++,CTkey4 = Timing[For[i = 1, i ≤ Floor[xi/d4] + 1, i++,CTkey4 = Timing[For[i = 1, i ≤ Floor[xi/d4] + 1, i++,
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For[j = 1, j ≤ Floor[zi/d4] + 1, j++,For[j = 1, j ≤ Floor[zi/d4] + 1, j++,For[j = 1, j ≤ Floor[zi/d4] + 1, j++,

sol = First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,sol = First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,sol = First[NDSolve[{x”[t] == Fmx[x[t], z[t],R1,Msp]/m− 6PiηR1x′[t]/m,

z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m,z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m,z”[t] == Fmz[x[t], z[t],R1,Msp]/m− 6PiηR1z′[t]/m,

x[0] == xx4[[i, j]], z[0] == zz43[[i, j]], x′[0] == 0, z′[0] == 0},x[0] == xx4[[i, j]], z[0] == zz43[[i, j]], x′[0] == 0, z′[0] == 0},x[0] == xx4[[i, j]], z[0] == zz43[[i, j]], x′[0] == 0, z′[0] == 0},

{x, z}, {t, 0, t0},Method→ {“EventLocator”, “Event”→ z[t]− δ/2,{x, z}, {t, 0, t0},Method→ {“EventLocator”, “Event”→ z[t]− δ/2,{x, z}, {t, 0, t0},Method→ {“EventLocator”, “Event”→ z[t]− δ/2,

“EventAction” :→ Throw[endt = t, “StopIntegration”], “Direction”→ −1,“EventAction” :→ Throw[endt = t, “StopIntegration”], “Direction”→ −1,“EventAction” :→ Throw[endt = t, “StopIntegration”], “Direction”→ −1,

“EventLocationMethod”→ “LinearInterpolation”}]];“EventLocationMethod”→ “LinearInterpolation”}]];“EventLocationMethod”→ “LinearInterpolation”}]];

tkey4 = Append[tkey4, endt];tkey4 = Append[tkey4, endt];tkey4 = Append[tkey4, endt];

xkey4 = Append[xkey4,Evaluate[x[endt]/.sol]];xkey4 = Append[xkey4,Evaluate[x[endt]/.sol]];xkey4 = Append[xkey4,Evaluate[x[endt]/.sol]];

tindex4 = Append[tindex4, {xx4[[i, j]], zz43[[i, j]], endt}]tindex4 = Append[tindex4, {xx4[[i, j]], zz43[[i, j]], endt}]tindex4 = Append[tindex4, {xx4[[i, j]], zz43[[i, j]], endt}]

];];];

];];];

];];];

bins4 = BinCounts[tkey4, 0.1];bins4 = BinCounts[tkey4, 0.1];bins4 = BinCounts[tkey4, 0.1];

NP4 = {};NP4 = {};NP4 = {};

For[i = 1, i ≤ 9, i++,For[i = 1, i ≤ 9, i++,For[i = 1, i ≤ 9, i++,

tempdata = Take[bins4, {1, i}];tempdata = Take[bins4, {1, i}];tempdata = Take[bins4, {1, i}];

NP4 = Append[NP4, {i0.1,Total[tempdata]}];NP4 = Append[NP4, {i0.1,Total[tempdata]}];NP4 = Append[NP4, {i0.1,Total[tempdata]}];

];];];

bins4 = BinCounts[tkey4, 1];bins4 = BinCounts[tkey4, 1];bins4 = BinCounts[tkey4, 1];

For[i = 1, i ≤ Length[bins4], i++,For[i = 1, i ≤ Length[bins4], i++,For[i = 1, i ≤ Length[bins4], i++,

tempdata = Take[bins4, {1, i}];tempdata = Take[bins4, {1, i}];tempdata = Take[bins4, {1, i}];

NP4 = Append[NP4, {i,Total[tempdata]}];NP4 = Append[NP4, {i,Total[tempdata]}];NP4 = Append[NP4, {i,Total[tempdata]}];

];];];

xds4 = Table[{}, {i, 1, time, 1}];xds4 = Table[{}, {i, 1, time, 1}];xds4 = Table[{}, {i, 1, time, 1}];
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nps4 = Table[0, {i, 1, time, 1}];nps4 = Table[0, {i, 1, time, 1}];nps4 = Table[0, {i, 1, time, 1}];

For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,

For[i = 1, i ≤ Length[tkey4], i = i+ 1,For[i = 1, i ≤ Length[tkey4], i = i+ 1,For[i = 1, i ≤ Length[tkey4], i = i+ 1,

If[tkey4[[i]] < j, nps4[[j]] = nps4[[j]] + 1;If[tkey4[[i]] < j, nps4[[j]] = nps4[[j]] + 1;If[tkey4[[i]] < j, nps4[[j]] = nps4[[j]] + 1;

xds4[[j]] = Append[xds4[[j]], xkey4[[i]]]];xds4[[j]] = Append[xds4[[j]], xkey4[[i]]]];xds4[[j]] = Append[xds4[[j]], xkey4[[i]]]];

];];];

];];];

intesity4 = Table[{i, 0}, {i, 1, time, 1}];intesity4 = Table[{i, 0}, {i, 1, time, 1}];intesity4 = Table[{i, 0}, {i, 1, time, 1}];

For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,For[j = 1, j ≤ time, j = j + 1,

tempI = 0;tempI = 0;tempI = 0;

For[i = 1, i ≤ Length[xds4[[j]]], i++,For[i = 1, i ≤ Length[xds4[[j]]], i++,For[i = 1, i ≤ Length[xds4[[j]]], i++,

tempI = tempI + E∧(I2Pi(spacing + xds4[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds4[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds4[[j, i]])/spacing);

];];];

intesity4[[j, 2]] = Abs[tempI]∧2; ;intesity4[[j, 2]] = Abs[tempI]∧2; ;intesity4[[j, 2]] = Abs[tempI]∧2; ;

];];];

xds40 = Table[{}, {i, 0.1, 0.9, 0.1}];xds40 = Table[{}, {i, 0.1, 0.9, 0.1}];xds40 = Table[{}, {i, 0.1, 0.9, 0.1}];

intesity40 = Table[{i, 0}, {i, 0.1, 0.9, 0.1}];intesity40 = Table[{i, 0}, {i, 0.1, 0.9, 0.1}];intesity40 = Table[{i, 0}, {i, 0.1, 0.9, 0.1}];

For[j = 1, j ≤ Length[intesity40], j = j + 1,For[j = 1, j ≤ Length[intesity40], j = j + 1,For[j = 1, j ≤ Length[intesity40], j = j + 1,

For[i = 1, i ≤ Length[tkey4], i = i+ 1,For[i = 1, i ≤ Length[tkey4], i = i+ 1,For[i = 1, i ≤ Length[tkey4], i = i+ 1,

If[tkey4[[i]] < intesity40[[j, 1]], xds40[[j]] = Append[xds40[[j]], xkey4[[i]]]];If[tkey4[[i]] < intesity40[[j, 1]], xds40[[j]] = Append[xds40[[j]], xkey4[[i]]]];If[tkey4[[i]] < intesity40[[j, 1]], xds40[[j]] = Append[xds40[[j]], xkey4[[i]]]];

];];];

];];];

For[j = 1, j ≤ Length[intesity40], j = j + 1,For[j = 1, j ≤ Length[intesity40], j = j + 1,For[j = 1, j ≤ Length[intesity40], j = j + 1,
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tempI = 0;tempI = 0;tempI = 0;

For[i = 1, i ≤ Length[xds40[[j]]], i++,For[i = 1, i ≤ Length[xds40[[j]]], i++,For[i = 1, i ≤ Length[xds40[[j]]], i++,

tempI = tempI + E∧(I2Pi(spacing + xds40[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds40[[j, i]])/spacing);tempI = tempI + E∧(I2Pi(spacing + xds40[[j, i]])/spacing);

];];];

intesity40[[j, 2]] = Abs[tempI]∧2;intesity40[[j, 2]] = Abs[tempI]∧2;intesity40[[j, 2]] = Abs[tempI]∧2;

]]]

intesity400 = Join[intesity40, intesity4];intesity400 = Join[intesity40, intesity4];intesity400 = Join[intesity40, intesity4];
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Appendix B

Derivation of Spin Function for an arbitrarily

orientated spin

A spin S is oriented along (θ, φ) in the polar coordinates as shown in figure B.1.∣∣∣(θ, φ)
〉
is the spin function. The problem becomes to solve for the eigenvalues (λ~/2)

and eigenstates of the operator S · n̂, i.e,

S · n̂
∣∣∣(θ, φ)

〉
= λ

~
2
∣∣∣(θ, φ)

〉
, (B.1)

where n̂ is the unit vector along S. Using the Pauli matrices, one obtains

S · n̂ = ~
2σn = ~

2(σxnx + σyny + σznz), (B.2)

where nx = sinθcosφ, ny = sinθsinφ, nz = cosθ, and

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (B.3)

Therefore,

S · n̂ = ~
2

 nz nx − iny

nx + iny −nz

 = ~
2

 cosθ sinθe−iφ

sinθeiφ −cosθ

 . (B.4)

Write the spin function as ∣∣∣(θ, φ)
〉

=

C1

C2

 , (B.5)

where C1 and C2 are both complex numbers. Equation (B.1) becomes
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S
θ

φ

x

y

z

Figure B.1 Schematic illustration of coordinates.

σn

C1

C2

 =

 cosθ sinθe−iφ

sinθeiφ −cosθ


C1

C2

 = λ

C1

C2

 , (B.6)

i.e.,

(σn − λ)

C1

C2

 =

cosθ − λ sinθe−iφ

sinθeiφ −(cosθ + λ)


C1

C2

 = 0. (B.7)

One obtains 
(cosθ − λ)C1 + sinθe−iφC2 = 0,

sinθeiφC1− (cosθ + λ)C2 = 0.
(B.8)

194



www.manaraa.com

For C1 and C2 are not both 0, equation (B.8) leads to

det(σn − λ) =

∣∣∣∣∣∣∣∣
cosθ − λ sinθe−iφ

sinθeiφ −(cosθ + λ)

∣∣∣∣∣∣∣∣ = 0, (B.9)

which yields λ = ±1. Insert λ into equation (B.8) and obtain

∣∣∣(θ, φ)
〉

=

 cos θ2
sin θ

2e
iφ

 , (B.10)

for λ = 1, and ∣∣∣(θ, φ)
〉

=

 sin θ
2

−cos θ2e
iφ

 , (B.11)

for λ = −1.
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Appendix C

Hydrogen silsesquioxane (HSQ)

HSQ is a flowable, inorganic polymer that was first developed by Dow Corning for

use as a spin-on insulator, and designed to replace current deposition processes for

interlayer dielectrics in the semiconductor industry. Its low level of contamination,

low dielectric constant, excellent gap fill, and very low defect density make it widely

used in the semiconductor industry, nanolithography and nanoscience application.

HSQ has been used as a high-resolution negative tone electron-beam resist (< 10

nm) [168].

H

Si SiO

O

SiOSi

O

O O

Si

O

Si

O

O

Si

O

O

OSi

H

H

H

H

H

HH

Figure C.1 Chemical structure of HSQ [240] [93].

Understanding the HSQ chemical structure is critical to understand how it behaves

as a negative e-beam resist. HSQ molecules have a cage-like structure containing eight

196



www.manaraa.com

Si atoms, twelve O atoms, and eight H atoms (figure C.1). It has been suggested that

HSQ’s sensitivity to an electron beam comes from the Si-H bond, which is much

weaker than the Si-O bond, and is severed during e-beam exposures. Once cut,

it is believed that the free bond on the Si, also called a radical site, reacts with

local moisture. Radical sites on neighboring cages become bridged with oxygen that

originates from the water absorbed, forming an Si-OH bond. This Si-OH bond is

unstable and decomposes into a stable Si-O-Si bond. This final step crosslinks the

cages forming a mechanically strong SiO2 film.
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